InGateway Documentation
Release 0.0.1

zhangning

May 06, 2023

Developer Guide

1 InGateway Documentation Site Navigation 1
1.1 Device Supervisor App User Manual
1.2 AWS IoT User Manual
1.3 Azure IoT User Manual e 116

1.4 DeviceSupervisor 2.0 Upgrade Notes o ittt 145

CHAPTER 1

InGateway Documentation Site Navigation

The Device Supervisor App provides users with convenient and reliable data collection, data processing,
and data upload to cloud functions. It supports ISO on TCP, ModbusRTU and other industrial protocol
analysis. If you want to quickly realize the data collection of multiple industrial protocols and preprocess
the device data locally, the filtered data can be uploaded to the self-built MQTT cloud platform after simple

configuration, then Device Supervisor will be your ideal choice.

1.1 Device Supervisor App User Manual

Device Supervisor App (Device Supervisor) allows users to collect and process data and upload data to the
cloud conveniently and supports data parsing over multiple industrial protocols such as ISO on TCP and
ModbusRTU. This manual takes collecting PLC data and uploading it to the ThingsBoard cloud platform
as an example to describe how to collect PLC data and upload it to the cloud through Device Supervisor
App. Hereinafter, InGateway501 is referred to as IG501 , InGateway502 is referred to as IG502 and
InGateway902 is referred to as 1G902.

e Overview
e 1. Prepare the hardware and data collection environment
— 1.1 Hardware wiring
x 1.1.1 Ethernet wiring
x 1.1.2 Serial port wiring

— 1.2 Configure InGateway to access PLC

InGateway Documentation, Release 0.0.1

— 1.8 Configure InGateway to connect Internet
— 1.4 Update the InGateway software version
e 2. Configure data collection for Device Supervisor
— 2.1 Install and run Device Supervisor
— 2.2 Configure data collection
x 2.2.1 Add o PLC
x 2.2.2 Add a variable
x 2.2.8 Configure an alarm policy
x 2.2.4 Configure a group
e 3. Report and monitor the PLC data
— 3.1 Monitor the PLC data locally
x 3.1.1 Monitor data collection locally
x 3.1.2 Monitor the alarm locally
— 3.2 Monitor the PLC data on cloud
x 3.2.1 Configure ThingsBoard
x 3.2.2 Configure a cloud service to report and receive data
e Appendix
— Importing/exporting data collection configuration
— Messages Management (custom MQTT publish/subscribe)
x Configure Publish Messages
x Configure Subscribe Messages
x Device Supervisor API Description
x Device Supervisor API Callback Function Description
— Parameter settings
— Gateway other configuration
— ThingsBoard reference flowchart
x Add devices and assets
x Transmit the PLC data to ThingsBoard devices
x Configure a visual dashboard

. FAQ

2 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

— Check whether the cloud service script is correct

— Check whether the App’ s cloud service output is correct

1.1.1 Overview

Prepare the following items:

o Edge computing gateway 1G501/1G502/1G902

« PLC

o Network cable/serial port cable

e *Firmware, SDKs, and apps required for software version update
— Firmware version: V2.0.0.r12622 or later
— SDK version: py3sdk-V1.3.7 or later
— App version: 1.1.2 or later

o *ThingsBoard demo account

The whole process is shown in the figure below:

1.1. Device Supervisor App User Manual 3

InGateway Documentation, Release 0.0.1

l: Start I

— - Hardware wiring

Y

Environment
preparation

Connect the gateway
ta the network

. Configure the gateway
collection environment

Update the software
version

—#1 Run Device Supervisor

Y > Configure tI'!e device
and variable
Configure data
collection

*Configure the
variable alarm

> *f,'o_nﬁgun:—- the
variable group

— - Maonitor the loca
data

Y

f‘ﬂD"I.itGr the Configure MQTT
davice data connection parameters

> Maonitor the data on
cloud

Configure the publish
and subscnbe messages

1.1.2 1. Prepare the hardware and data collection environment

e 1.1 Hardware wiring
e 1.2 Configure InGateway to access PLC

e 1.3 Configure InGateway to connect Internet

4 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

e 1.4 Update the InGateway software version

1.1 Hardware wiring
1.1.1 Ethernet wiring
o Ethernet wiring for I1G902
Power on 1G902 and connect 1G902 and the PLC through an Ethernet cable according to the topology.

Field side Platform side

= 2
Ethernet

Data visualization

! pmmmassses
By
3 !|i| «f N Ethernet

LTE 4G /Ethernet

MQTT
cloud
GE0/2 port platform Error alarm

PN

Remote management

Ethernet

o Ethernet wiring for IG502

Power on IG502 and connect IG502 and the PLC through an Ethernet cable according to the topology.

1.1. Device Supervisor App User Manual 5

InGateway Documentation, Release 0.0.1

Field side
E ﬁ Ethernet

: ;i T Ethernet

| : LAN port

! : 1G502

:]

i

| m

| Ethernet

o Ethernet wiring for IG501

LTE 4G /Ethernet

Platform side

Data visualization

MQTT
cloud
platform

TN

Error alarm

PN

Remote management

Power on IG501 and connect IG501 and the PLC through an Ethernet cable according to the topology.

Field side
i Ethernet

T g T e T

1 e
. e
i ||Ii| «f N Ethernet

FEO0/1
port

1G501

o
@ Ethernet

LTE 4G

Platform side

Data visualization

MQTT
cloud
platform

/N

Error alarm

PN

Remote management

6 Chapter 1.

InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

1.1.2 Serial port wiring

e Serial port wiring for 1G902

Power on 1G902 and connect 1G902 and the PLC according to the topology.

Field side Platform side

Data visualization

! 1 -l I Serial port LTE 4G /Ethernet

MQTT
cloud
platform

JAN

Error alarm

RS232/
RS485

PN

Remote management

Serial port

The following figure describes how to connect serial port terminals of 1G902:

XD =

Fesarwed(F5233) [BXD =

GHD =

4 ||

Feserved(RR485) [5 EI
\

&
3

o Serial port wiring for IG502

Power on 1G502 and connect IG502 and the PLC according to the topology.

1.1. Device Supervisor App User Manual 7

InGateway Documentation, Release 0.0.1

Field side Platform side

= 2
Serial port

Data visualization

1 puemEsEe s

i g l
0 1ibl « Serial port

LTE 4G /Ethernet MQTT

cloud
platform

JAN

Error alarm

RS232/
RS485

PN

Remote management

Serial port

The following figure describes how to connect serial port terminals of IG502:

~ =
TXD =

Feserved(FS232) [BXD =
GO =

Feserved(RE2485) [; %

~—

q
3

e Serial port wiring for IG501

Power on IG501 and connect IG501 and the PLC according to the topology.

8 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Field side Platform side

= =
Serial port

Data visualization

* |i‘| . N serial port LTE 4G/Ethernet MQTT
cloud
RS232/
RS485 platform Error alarm

IG501

PN

Remote management

Serial port

The following figure describes how to connect serial port terminals of IG501:

Screws
]
GND l1 @
RS485- S
RS485+ @
TXD ®—:=_
RXD S
GND (1 @

1.2 Configure InGateway to access PLC

e The default TP address of IG902> s GE 0/2 port is 192.168.2.1. To enable IG902 to access the
Ethernet-based PLC over the GE 0/2 port, you need to set the GE 0/2 port to be in the same network

1.1. Device Supervisor App User Manual 9

InGateway Documentation, Release 0.0.1

segment of the PLC. For more information about the setting method, see Access the 1G902.

e The default IP address of IG502’ s LAN port is 192.168.2.1. To enable IG502 to access the Ethernet-
based PLC over the LAN port, you need to set the LAN port to be in the same network segment of

the PLC. For more information about the setting method, see Access the IG502.

o The default IP address of IG501’ s FE 0/1 port is 192.168.1.1. To enable IG501 to access the
Ethernet-based PLC over the FE 0/1 port, you need to set the FE 0/1 port to be in the same network

1.3 Configure InGateway to connect Internet

e Configure the IG902 to connect Internet by referring to Connect 1G902 to the Internet.
e Configure the IG502 to connect Internet by referring to Connect IG502 to the Internet.

e Configure the IG501 to connect Internet by referring to Connect IG501 to the Internet.

1.4 Update the InGateway software version
If you want to get the latest InGateway and its functional characteristics, please visit the Resource. To
update the software version, see the following links:

e Update the IG902 software version To use Device Supervisor, IG902’ s firmware version must be

V2.0.0.r12537 or later, and the SDK version must be py3sdk-V1.4.2 or later.

e Update the 1G502 software version To use Device Supervisor, IG502’ s firmware version must be

V2.0.0.r13595 or later, and the SDK version must be py3sdk-V1.4.2 or later.

e Update the IG501 software version To use Device Supervisor, IG501’ s firmware version must be
V2.0.0.r12884 or later, and the SDK version must be py3sdk-V1.4.0 or later.

1.1.3 2. Configure data collection for Device Supervisor
e 2.1 Install and run Device Supervisor
e 2.2 Configure data collection

2.1 Install and run Device Supervisor

e Install and run Python apps on 1G902 by referring to Install and run Python apps on 1G902. To
download Device Supervisor, please visit the Resource. After Device Supervisor runs normally, the

following figure is displayed:

10 Chapter 1. InGateway Documentation Site Navigation

http://manual.ig.inhandnetworks.com/en/latest/IG902-Quick-Start-Manual.html#set-lan-parameters
http://manual.ig.inhandnetworks.com/en/latest/IG502-Quick-Start-Manual.html#set-lan-parameters
http://manual.ig.inhandnetworks.com/en/latest/IG501-Quick-Start-Manual.html#set-lan-parameters
http://manual.ig.inhandnetworks.com/en/latest/IG902-Quick-Start-Manual.html#set-wan-parameters
http://manual.ig.inhandnetworks.com/en/latest/IG502-Quick-Start-Manual.html#set-wan-parameters
http://manual.ig.inhandnetworks.com/en/latest/IG501-Quick-Start-Manual.html#set-wan-parameters
https://www.inhandnetworks.com/downlist/cid-148/
http://manual.ig.inhandnetworks.com/en/latest/IG902-Quick-Start-Manual.html#update-the-software
http://manual.ig.inhandnetworks.com/en/latest/IG502-Quick-Start-Manual.html#update-the-software
http://manual.ig.inhandnetworks.com/en/latest/IG501-Quick-Start-Manual.html#update-the-software
http://manual.ig.inhandnetworks.com/en/latest/IG902-Quick-Start-Manual.html#install-and-run-python-app
https://www.inhandnetworks.com/downlist/cid-148/

InGateway Documentation, Release 0.0.1

Owverview [Edge Computing / Python Edge Computing

Python Engine
SDK Version: 1.3.8 Enable Debug Mode:
Python Version: Python3 Username: pyuser
Used User Storage: 402MB/bGB 6% Password: 4DgrGQGB+c5_
APP
App Status Entire Operation @ @ O
App Name App Version SDK Version State Uptime Log Operation
device_supervisor 113 13.7 00:04:35 L O Q oo
App List
Enable App Mame App Version SDK Version Start Parameters Operation @
device_supervisor 1.1.3 1.3.7 i}

e Install and run Python apps on IG502 by referring to Install and run Python apps on IG502. To
download Device Supervisor, please visit the Resource. After Device Supervisor runs normally, the

following figure is displayed:

1.1. Device Supervisor App User Manual 11

http://manual.ig.inhandnetworks.com/en/latest/IG502-Quick-Start-Manual.html#install-and-run-python-app
https://www.inhandnetworks.com/downlist/cid-148/

InGateway Documentation, Release 0.0.1

Owverview [Edge Computing / Python Edge Computing

Python Engine
SDK Version: 1.3.8 Enable Debug Mode:
Python Version: Python3 Username: pyuser
Used User Storage: 402MB/bGB 6% Password: 4DgrGQGB+c5_
APP
App Status Entire Operation @ @ O
App Name App Version SDK Version State Uptime Log Operation
device_supervisor 113 13.7 00:04:35 L O Q (D)
App List
Enable App Mame App Version SDK Version Start Parameters Operation @
device_supervisor 1.1.3 1.3.7 i}

e Install and run Python apps on IG501 by referring to Install and run Python apps on IG501. To
download Device Supervisor, please visit the Resource. After Device Supervisor runs normally, the

following figure is displayed:

12 Chapter 1. InGateway Documentation Site Navigation

http://manual.ig.inhandnetworks.com/en/latest/IG501-Quick-Start-Manual.html#install-and-run-python-app
https://www.inhandnetworks.com/downlist/cid-148/

InGateway Documentation, Release 0.0.1

Overvie Edge Computing / Python Edge Computing

1L Upgrade

Python Engine

SDK Version: 1.3.8
Python Version: Python3

Used User Storage: 402MB/bGB 6%

APP
App Status
App Name App Version SDK Version
device_supervisor 113 137
App List
Enable App Mame App Version
device_supervisor 1.1.3

2.2 Configure data collection

e 2.2.1 Add a PLC
e 2.2.2 Add a variable
e 2.2.83 Configure an alarm policy

e 2.2.4 Configure a group

2.2.1 Add a PLC

Enable Debug Mode:
Username: pyuser

Password: 4DgrGQGB+c5_

Entire Operation @ @ O

State Uptime Log Operation
: oeess = D “ :3 ©
SDK Version Start Parameters Operation @
1.3.7 |

¢ Add a PLC that communicates over ISO on TCP

Choose Edge Computing > Device Supervisor > Device List, and click Add PLC. On the

device adding page, select ISO on TCP as the PLC protocol and configure the PLC communication

parameters. Note: The device name must be unique.

The following are examples of adding PLCs S7-1500, S7-1200, S7-400, and S7-300(the mode is Rack/

Slot). Configure the rack number and slot number to 0 and 1 respectively.

1.1. Device Supervisor App User Manual

13

InGateway Documentation, Release 0.0.1

‘Add DevicelList

*Name: S7-1200

* Protocol| 150-on-TcP

*IP Address: 1051673

wPort: 102

*Mode] @ Rack/Slot TSAP

*Rack: 0

#Slot: 0

The following are examples of adding S7-200, S7-200 Smart and Siemens LOGO series PLCs (the mode
is TSAP). Note: When adding S7-200 Smart, the Client TSAP configuration is 02.00, and the Server

TSAP configuration is 02.01; the rest of the series are configured according to the actual situation.

Add Devicelist

*Name: $7-1200

*+Protocol{ 150-on-TCP

*IP Address: 1051673

*Port: 102

*Mode: Rack/Slot | @ TSAP

#Client TSAP: 10,00

* Server TSAP: 1000

o (3

After the PLC is added, the page is as follows:

Overview / Edge Computing / Device Supervisor / Device List

Device List Operation: () 1, 4,
Device name

57-1200 o
150-0n-TCP mmmmme— Device type
2

IP: 10.5.16.73 =

"Device IP address

Total 1 item E]
Variable Table(S7-1200) Operation: 1, 4,
Name Group Data Type Address. Value Description Time Operation @

Add a PLC that communicates over ModbusTCP

Choose Edge Computing > Device Supervisor > Device List, and click Add PLC. On the
device adding page, select ModbusTCP as the PLC protocol and configure the PLC communication
parameters. (The default port number and byte order are 502 and abcd respectively. Adjust them as

14

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

needed.) Note: The device name must be unique.

Add Devicelist

*Name:

* Protocol:| ModbusTcP

#1P Address:
* Port:
* Slave:

* Byte Order:

Modbus Device

1051677

502

1

abcd

After the PLC is added, the page is as follows:

Overvien / Edge Computing / Device Supervisor / Device List
Device List Operation: (1) 1, 4, 7

Modbus Device u

ModbusTCP

IP: 10.5.16.77 £

Total 1 items E]
Variable Table(Modbus Device) Operation: 1, .},
Name Group Data Type Address Value Description Time Operation ()

Add a PLC that communicates over ModbusRTU

Choose Edge Computing > Device Supervisor > Device List, and click Add PLC. On the
device adding page, select ModbusRTU as the PLC protocol and configure the PLC communication

parameters. Note: The device name must be unique.

‘Add Devicelist

* Name: Modbus
*Slave: 1
* Serial Port: RS485
* Byte Order: abed
Baud Rate: 9600 Data Bits: 8

Parity: None Stop Bits: 1

o 3

After the PLC is added, the page is as follows:

Device Supervisor App User Manual 15

InGateway Documentation, Release 0.0.1

Device List

Device List Operation: () 1, 4,
Modbus B
ModbusRTU
2
Slave: 1
Total 1 items ‘ 1 ‘
Variable Table(Modbus) Operation: 1, 4,
Name Group Data Type Address Value Description Time Operation @

To modify communication parameters for the RS232/RS485 serial port, choose Edge Computing >
Device Supervisor > Parameter Settings, and modify them on the page. After modification,

communication parameters of all serial ports are automatically updated to the modified ones.

Device Superviso Parameter Settings

Serial Port Settings

RS-485 Serial Port RS-232 Serial Port

+ Baud Rate: 9600 # Baud Rate: 9600

+ Data Bits: 3

Data Bits: 21
* Parity: None * Parity: Mone
Stop Bits: 1 # Stop Bits:
Default Parameter
+ Log level: DEBUG
+ Historical alarm max: 2000 (1-10000)
+ Historical data max: 100000 (1-100000)
Custom Parameter
Parameters Parameters Value Operation @

o Add EtherNET/IP device (App version 1.2.5 or above is required)

Choose Edge Computing > Device Monitoring > Device List, and click on Add PLC. Select
EtherNET /IP as the PLC protocol on the Add Device page, and then configure the communication

parameters of the PLC. Note: The device name must be unique.

16 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Add to Devicelist b

* Name: | EIP
* Protocol: EtherMet/IP
* |P Address: 10.5.16.72

* Port: | 44818

2.2.2 Add a variable

e Add the ISO on TCP variable

On the Device List page, click Add variable, and configure the variable parameters in the pop-up

box.

*

*

Variable Name: The variable name. (The variable name must be unique in the same device.)
Register Type: The variable register type. Four types are supported: I/Q/M/DB.

DB Number: The variable DB number when the register type is DB.

Register Address: The variable register address.

Data Type: The variable data type, including:

BOOL: True or False.

BIT: O or 1.

BYTE: An 8-bit unsigned character.
SINT: An 8-bit signed character.
WORD: A 16-bit unsigned character.
INT: A 16-bit signed character.
DWORD: A 32-bit unsigned character.
DINT: A 32-bit signed character.

FLOAT: A 32-bit floating point.

1.1. Device Supervisor App User Manual 17

InGateway Documentation, Release 0.0.1

* STRING: An 8-bit string.
x BCD: A 16-bit BCD code.

— Decimal Places: The number of decimal places of the variable when the data type is FLOAT.

The maximum value is 6.
— Size: The length of one read string is 1 when the data type is STRING.

— Register Bit: The bit offset of the variable when the data type is BOOL or BIT. Any integer
from 0 to 7 is supported.

— Read/Write:

* Read: Read only.

* Write: Write only.

* Read/Write: Read and write.
— Mode:

*x Realtime: Collect the variable data at the collection interval of the group it belongs and

report the data at the report interval.

* Onchange: Collect the variable data only when the data changes and report the data at the

report interval.
— Unit: The variable unit.
— Description: The variable description.
— Group: The collection group to which the variable belongs.

The following figure is an example of adding a switch variable with the address %10.0:

Add Variable

Variable Name: test

* Register Type:

«Register Address: 0

* Data Type: BOOL
* Register Bit: 0
* Read/Write: Read

*Mode: Realtime

The following figure is an example of adding a byte variable with the address %IB1:

18

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Add Variable

* Variable Mame:

+ Register Type:

+ Register Address:

* Data Type: BYTE

* Read/Write: Read/Write

* Mode: Realtime

Unit:

Description:

* Group:

The following figure is an example of adding a word variable with the address %IW3:

1.1. Device Supervisor App User Manual 19

InGateway Documentation, Release 0.0.1

Add Variable

* Variable Mame:

+ Register Type:

+ Register Address:

+ Data Type:

* Read/Write:

* Mode:

Unit:

Description:

* Group:

WORD

Read/ Write

Realtime

The following figure is an example of adding a dual-word variable with the address %ID4:

20

Chapter 1.

InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Add Variable

* Variable Name:

* Register Type:

+ Register Address:

* Data Type: DWORD

* Read/Write: Read/Write

* Maode: Realtime

Unit:

Description:

* Group:

The following figure is an example of adding a floating point variable with the address %DB6.DBD18:

1.1. Device Supervisor App User Manual 21

InGateway Documentation, Release 0.0.1

Add Variable

* Variable Name:

+ Register Type:

* DB Mumber:

+ Register Address:

* Data Type:

Decimal Places:

* Read/Write: Read/Write

* Mode: Realtime

Unit:

Description:

* Group: default

¢ Add the Modbus variable

On the Device List page, click Add variable, and configure the variable parameters in the pop-up

box for adding variables.

— Variable Name: The variable name. (The variable name must be unique in the same device.)

— Register Address: The variable register address.
— Data Type: The variable data type, including:

* BOOL: True or False.

* BIT: 0 or 1.

* WORD: A 16-bit unsigned character.

22 Chapter 1.

InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

*

INT: A 16-bit signed character.

x DWORD: A 32-bit unsigned character.
x DINT: A 32-bit signed character.

x FLOAT: A 32-bit floating point.

* STRING: An 8-bit string.

— Decimal Places: The number of decimal places of the variable when the data type is FLOAT.

The maximum value is 6.
— Size: The string length when the data type is STRING.

— Register Bit: The bit offset of the variable when the address is 30001~40000, 310001~365535,
40001~50000, and 410001~465535 and the data type is BOOL or BIT. Any integer from 0 to 15
is supported.

— Read/write:

* Read: Read only.

* Write: Write only.

* Read/Write: Read and write.
— Mode:

*x Realtime: Collect the variable data at the collection interval of the group it belongs and

report the data at the report interval.

* Onchange: Collect the variable data only when the data changes and report the data at the

report interval.
— Unit: The variable unit.
— Description: The variable description.
— Group: The collection group to which the variable belongs.

The following figure is an example of adding a coil variable with the address 00001:

1.1. Device Supervisor App User Manual 23

InGateway Documentation, Release 0.0.1

Add Variable

* Variable Name:

Register Address:

* Data Type:

* Read/Write:

* Maode:

Unit:

Description:

* Group:

BIT

Read,Write

Realtime

default

The following figure is an example of adding a switch variable with the address 10001:

24

Chapter 1.

InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Add Variable

* Variable Name: test2

* Register Address: 10001

+ Data Type: BIT

* Read/Write: Read

* Maode: Realtime

Unit:

Deszcription:

* Group: default

The following figure is an example of adding an integer variable with the address 30001:

1.1. Device Supervisor App User Manual 25

InGateway Documentation, Release 0.0.1

Add Variable

* \ariable Name:

+ Register Address:
* Data Type:

* Read/Write:

* Mode:

Unit:

Description:

* Group:

testd

20001

WORD

Read

Realtime

clefault

The following figure is an example of adding a floating point variable with the address 40001:

26

Chapter 1.

InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Add Variable

* Variable Name:

+ Register Address:

* Data Type:

Decimal Places:

* Read/Write: Read/Write

* Mode: Realtime

Unit:

Description:

* Group:

o Add EtherNETIP variable (App version 1.2.5 and above required)

Click Add Variable button on the Device List page. To configure the parameters of EtherNET /TP
variablse in the add variable pop-up box. It is unnecessary to configure the data type. The De-

vice Supervisor will judge the data type by itself. (Currently supported EIP data types include
‘BOOL’ ‘SINT’ ‘INT’ ‘DINT’ ‘REAL’ ‘STRING’):

— Variable name: the name of the variable. (variable name cannot be repeated under the same

device)
— Label: The label of the variable.

— Decimal: The length of data after the decimal point of a variable when the data type is a floating

point number up to 6 bits.
— Read-write access permission:

* Read: Read only, not writable

1.1. Device Supervisor App User Manual 27

InGateway Documentation, Release 0.0.1

* Write: Write only, not readable
* Read/Write: Read and write
— Collection mode:
x Realtime: Collect variables at fixed collection intervals and report data at reporting intervals.

* Onchange: The data is collected and reported according to the reporting interval after the

variable value changes.
— Unit: Unit of a variable.
— Description: Variable description.
— Group: The collection group where the variable belongs.

The following is an example of adding a variable with the label name ZB.LEN. 16:

Add Variable b4

* Variable Mame: EIP-test
Symbol: | ZBLEM.16
Decimal Places: 2 @
* Bead/Write: Read/Write
* Mode: Realtime
Unit:
Description:

* Group: default

28 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

2.2.3 Configure an alarm policy

Choose Edge Computing > Device Supervisor > Alarm > Alarm Strategy, click Add, and configure
the alarm policy parameters in the pop-up box. You can configure the alarm policy in two modes: Use

New Variable and Use Exist Variable. The parameters are described as follows:
e Use New Variable
— Name: The alarm name.
— Group: The alarm group.

— Mode: In Use New Variable mode, the alarm variable is not configured in the Device List. You

need to configure the variable parameters, which does not add a new variable to the Device List.
— Device: The device of the alarm variable.

— Register Type: The variable register type. Four types are supported: I/Q/M/DB.(ISO on TCP

variable)
— Register Address: The address of the alarm variable.
— Data Type: The data type of the alarm variable.
— Alarm Condition
* Judgment Conditions: Valid values are =, |=, >, | <, and .
* Logical Condition
None: Judge the alarm based on a single judgment condition.
&&: Judge the alarm based on two single judgment conditions in AND mode.
| |: Judge the alarm based on two single judgment conditions in OR mode.
— Description: The alarm description.

The following figure is an example of adding an alarm variable. When its value is greater than 30 but

less than 50, the alarm is triggered; otherwise, the alarm is not triggered or is cleared.

1.1. Device Supervisor App User Manual 29

InGateway Documentation, Release 0.0.1

Mame: Warn1
* Group: warning
(@ Use New Variable Use Exist Variable
Device: Modbus
* Register Address: | 40001
* Data Type: WORD

* Alarm Condition: =0

50

* Description: Spead over 30!

o Use Exist Variable

Name: The alarm name.

— Group: The alarm group.

— Mode: In Use Existing Variable mode, the alarm variable is already configured in the Device List.

You can enter the variable name and use it directly.

Device: The device of the alarm variable.

Variable Name: The name of referenced variable.

Alarm Condition
x Judgment Conditions: Valid values are =, !=, >, | <, and .
* Logical Condition
- None: Judge the alarm based on a single judgment condition.

- &&: Judge the alarm based on two single judgment conditions in AND mode.

30 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

[1: Judge the alarm based on two single judgment conditions in OR mode.

— Description: The alarm description.

The following figure is an example of using an existing variable to generate an alarm variable. When its

value is greater than 30 but less than 50, the alarm is triggered; otherwise, the alarm is not triggered

or is cleared.

* Device:

* Variable Name:

* Alarm Condition:

+ Description:

2.2.4 Configure a group

Warn1

warning

Use New Variable (® Use Exist Variable
Modbus

testd
30

50

Speed over 30!

To configure different collection intervals for a variable or an alarm or report the variable data by MQTT

topic, choose Edge Computing > Device Supervisor > Group, and add a group on the page.

1.1. Device Supervisor App User Manual 31

InGateway Documentation, Release 0.0.1

Owerview [Edge Computing / Device Supervisor / Group
Operation: 1, 4,
Uploadi
Name Type Polling Interval(S) ploading Operation @
Interval(S)
warning Alarm 10 - Z
default Collect 10 10 Z

Total 2 items 30/ page

e Add a collection group

The following figure is an example of adding a collection group named group2. Data of variables in

this group is collected once every 5 seconds.

Add Group

* Mame: group2

+ Type: (@ Collect

Polling Interval: S{1-3600)

* Uploading Interval: S(1-3600)

After a collection group is added, you can associate the variable you added with the group or select

the target variable from the variable list and add it to the specified group. Data of variables in the

group is collected at the group’ s collection interval.

32 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Add Variable

* Variable Name: tests

* Register Address: 40008

* Data Type: WORD

* Read/Write: = Read

* Mode: Realtime

Unit:

Description:

* Group: | default

default

group2 Cancel m

Group List

Name

default

—

e Add an alarm group

The following figure is an example of adding an alarm group named warn_ group. The alarm group

checks whether the alarm variables in the group are in alarm state once every 5 seconds.

1.1. Device Supervisor App User Manual 33

InGateway Documentation, Release 0.0.1

Add Group

* Mame: warn_group
* Type: Collect (@ Alarm

Polling Interval: S{1-3800)

After an alarm group is added, you can associate the alarm policy you added with the group or select
the target alarm policy from the alarm list and add it to the specified group. The system checks the

variable alarm state at the group’ s collection interval according to the alarm policies in the group.

* Name:

* Group: [

i warning ist Variable
* Device:
Register Address:
Data Type:
* Alarm Condition:

Description:

Cancel n

34

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Add Group

Name

warning

Total 2 items

1.1.4 3. Report and monitor the PLC data

e 3.1 Monitor the PLC data locally

e 3.2 Monitor the PLC data on cloud

3.1 Monitor the PLC data locally

e 3.1.1 Monitor data collection locally

e 3.1.2 Monitor the alarm locally

3.1.1 Monitor data collection locally

50/ page

cancel

After configuring data collection, choose Edge Computing > Device Supervisor > Device List, and

view the data collection status. Click the device card in Device List to switch to the desired PLC data.

Ovenview / Edge Computing / Device Supervisor / Device List
Device List
57-1200 a
150-on-TCP
IP: 10.5.16.73 z

Variable Table(S7-1200)

Name Group
* test2 default
o Tl default
[z default

+ Added to Q Delete
Blue means that data is collected and
gray means that no data is collected.

View the data of the S7-1200 device

Modbus o
ModbusTCP
2
1P: 10.5.16.77 =
The variable value. It is
empty if no data is collected.
Data Type Address Value / Description
FLOAT DB6.14 52856 i
BOOL 100 false 4
BOOL 101 true

Blue means writable and
gray means non-writable.

Click the button in the value column to write values.

Operation: (¥) 1, 4,

Total 2 items E]

Collection time of

the latest data
Operation: 1, 4,

Time Operation (D)
2o
2020-06-15 21:38:37 20
2020-06-15 21:39:37 Es)

Total 3 items 50/ page

1.1. Device Supervisor App User Manual

35

InGateway Documentation, Release 0.0.1

Device List

Device List

S7-1200
150-on-TCP
IP: 10.5.16.73

IN

Variable Table(S7-1200)

Name

® test]

o test2

Device List

Group

default

default

Device List

§7-1200
150-on-TCP
IP: 10.5.16.73

IS

Variable Table(S7-1200)
Name
* testl

* test2

Group

default

default

Modbus
ModbusTCP
IP: 10.5.16.77

Data Type

BOOL

FLOAT

Maodbus
ModbusTCP
IP:10.5.1677

Data Type

BOOL

FLOAT

In

Address

10.0

DB6.18

I

Address

10.0

DB6.18

After the value is modified, the page is as follows:

Device List

Device List

§7-1200
150-0n-TCP
IP: 10.5.16.73

I

Variable Table(S7-1200)
Name
o testl

® test?

Group

default

default

Modbus
ModbusTCP
IP: 10.5.16.77

Data Type

BOOL

FLOAT

3.1.2 Monitor the alarm locally

2

Address

10.0

DB6.18

Value

false

Value

false

| 134l

Value

false

P

I

Description

Description

Description

oOperation: () 1, 4,

Total 2 items ‘_‘
Operation: 1,
Time Operation
2020-06-02 15:59:51 20
2020-06-02 15:59:51 z 0
Total 2 items ‘7‘ 50/ page

Operation: (3) t, 1,

Total 2 items

Operation: I,

Time Operation

2020-06-02 16:00:41 za

2020-06-02 16:00:41 za
Total 2 items ‘ 1 ‘ 50 / page

Operation: () 1, 4,

Total 2 items |_‘
Operation: 1,
Time Operation
2020-06-02 16:01:21 20
2020-06-02 16:01:21 20
Total 2 items ‘7‘ 50 / page

L

After configuring the alarm policy, choose Edge Computing > Device Supervisor > Alarm, and view

the variable alarm status.

¢ Realtime Alarms: View alarm messages that are not cleared.

36

Chapter 1.

InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

uperviso Alarm
Realtime Alarms Alarm Strategy History Alarms
Name Status Description value Time Operation
Warn1 Triggered Speed over 30! 31 2020-06-02 16:05:52 Q

Total 1 items | | 50/ page
e History Alarms: Screen any alarm messages you want to view.
ervie E om Device Supervisor / Alarm
Realtime Alarms Alarm Strategy History Alarms
Name Time: 2020-05-03 18:09 ~ 2020-06-02 1&:09 C)\
Operation :
Mame Status Description value Time Operation
Warn1 Triggered Speed over 30! 333 2020-06-02 16:09:42 E O
Warn1 Restored Speed over 30! 245 2020-06-02 16:06:52 E G
Warn1 Triggered Speed over 30! 31 2020-06-02 16:05:52 ERn)
Total 3 items | 1 | 50 / page

3.2 Monitor the PLC data on cloud

e 3.2.1 Configure ThingsBoard

e 3.2.2 Configure a cloud service to report and receive data

3.2.1 Configure ThingsBoard

For the usage method of ThingsBoard, see Get Started with ThingsBoard or refer to ThingsBoard Reference
Flowchart for test.

3.2.2 Configure a cloud service to report and receive data

Choose Edge Computing > Device Supervisor > Cloud Service. Select Enable Cloud Service,

configure the MQTT connection parameters, and then click Submit.

1.1. Device Supervisor App User Manual 37

https://thingsboard.io/docs/getting-started-guides/helloworld/

InGateway Documentation, Release 0.0.1

Type: The connection of Thingsboard is based on Standard MQTT. For more information about how
to use AWS IoT, please refer to AWS IoT User Manual; For more information about how to use Azure

IoT, please refer to Azure IoT User Manual.
Server Address: The ThingsBoard demo address is demo.thingsboard.io.
Client ID: Any unique ID.

Username: The access token of the ThingsBoard device. For more information about how to obtain
the access token, see Transmit the PLC data to ThingsBoard.

Password: A password consisting of 6-32 bits.

Use default values for other configuration items.

After the configuration is completed, the page is as follows:

38

Chapter 1. InGateway Documentation Site Navigation

http://app.ig.inhandnetworks.com/en/latest/AWSIoT-EN.html
http://app.ig.inhandnetworks.com/en/latest/AzureIoT-EN.html

InGateway Documentation, Release 0.0.1

 Edge Computing / Device Supervisor / Cloud

1!
=

Status

Cloud Status: Disconnect

Connection time:

Enable Cloud Service: (@)
Type: MOTT
Server Address: demo.thingsboard.io
* Client ID: datatest
Enable Authority: QO
* Username: 24
Password: rensan &

Advanced Settings

* Port: 1823

* Keap Alive: &0 s(1-3600)
TLS Encryption: (@ Disable Enzble

* Clean Session: NO (® YES

MOTT Version: MQTTv31 (8 MQTTv311

Then, click Messages Management to configure the publish and subscribe topics. For more informa-
tion about how to configure the publish and subscribe topics, see Messages Management (custom MQTT

publish/subscribe) The following is a configuration example:
e Publish messages:
— Topic: vi/devices/me/telemetry

— Qos(MQTT): 1

1.1. Device Supervisor App User Manual 39

InGateway Documentation, Release 0.0.1

Group Type: Collect

Group: The name of the group whose data needs to be uploaded to ThingsBoard. default is

used in this manual.
Main Function: The name of the entry function. upload_test is used in this manual.

Script:

from common.Logger import logger #Import log printing module logger.

def upload_test(data, wizard_api): #Define the main function upload_test.
logger.info(data) #Print the collected data in logs of the INFO level.
value_dict = {} #Define the report data dictionary value_dict.
for device, val_dict in data['values'].items(): #Traverse the values,
—dictionary in the data. The dictionary contains the device name and the,
—wvariables of the device.
for id, val in val_dict.items(): #Traverse wvariables and assign values,
—for the wvalue_dict dictionary.
value_dict[id] = val["raw_data"]
value_dict["timestamp"] = data["timestamp"]
logger.info(value_dict) #Print data of the value_dict dictionary in logs ofy
—the INFO level.
return value_dict #Send wvalue_list to the app, which then sequentialy,
—uploads 1t to the MUTT server. The value_list ts finally in the following,
—format: {'bool': False, 'byte': 7, 'real': 0.0, 'timestamp': 1583990892.
—5429199}.

After the configuration is completed, the page is as follows:

40

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Edit Publish

* Name: default
Topic: v1/devices/me/telemetry
* Qos(MQTT):
Group Type: (@ Collect Alarm
* Group: default ¥
Main Function: upload_test Matches the name of the entry function in the script
* Script: from common.lLogger import logger #Import log printing modu

def upload_test(data, wizard api): #Define the main functi
logger.info(data) #Print the collected data in logs of
value dict = {} #Define the report data dictionmary val
for device, wal_dict in data['values®].items(): #Trave
for id, wal in val dict.items(): #Traverse variabl
value dict[id] = val["raw_data”]
value dict["timestamp”] = data["timestamp™]
logger.info(value_dict) #Print data of the value dict
return value dict #Send value list to the app, which t

Cancel n

Subscribe messages:
— Topic: vi/devices/me/rpc/request/+
— Qos(MQTT): 1

— Main Function: The name of the entry function. ctl_test is used in this manual.

Script:

from common.Logger import logger #Import log printing module logger.

import json #Import the JSON module.

def ctl_test(topic, payload, wizard_api): #Define the main function ctl_test.
logger.info(topic) #Print the subscribe topic.
logger.info(payload) #Print the subscribe data. ThingsBoard devices delivery

—data in the following format: {"method":"setValue", "params":truel.

(continues on next page)

Device Supervisor App User Manual 41

InGateway Documentation, Release 0.0.1

(continued from previous page)

payload = json.loads(payload) #Deserialize subscribe data.
if payload["method"] == "setValue": #Check whether the data is written.
message = {"bool":payload["params"]} #Define the message for modifying,
—variables, including the variable names and values.
ack_tail = [topic.replace('request', 'response'), message] #Define they,
—confirmation data, including the response topic and message.
wizard_api.write_plc_values(message, ack, ack_tail) #Call the write_plc_
—values method to deliver data from the message dictionary to the specified,

—variable. Call the ack method and deliver ack_tatl to the ack method.

def ack(data, ack_tail, wizard_api): #Define the ack method.
resp_topic = ack_tail[0] #Define the response topic.
resp_data = ack_tail[l] #Define the response data.
wizard_api.mqtt_publish(resp_topic, json.dumps(resp_data), 1) #Call the,
—mqtt_publish method to deliver the response data to the MQTT server in {'bool

—': True} format.

After the configuration is completed, the page is as follows:

42

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

EditSubscribe

+MName: Send data
*Topic: v1/devices/me/rpc/request/+
* Qos(MQTT):
* Main Function: ctl_test Matches the name of the entry function in the script

* Script: from common.Log import logger #5 i JTEIHE#E R 10gger
import json #3 A jsoniHiR

def ctl test(topic, payload

logger.info(topic) #TE

logger.info(payload) #iT

payload = json.loads(payload) #

if payload["method”™] == "setValue
message = {"bool™:payload[”params
ack_tail = [topic.replace('request’, ‘response’
wizard_api.write plc_values(message, ack, ack_tail

ack(data, ack_tail, wizard_api)
resp topic = ack tail[e] #E.*0m

Cancel

1.1.5 Appendix

o Importing/exporting data collection configuration

o Messages Management (custom MQTT publish/subscribe)
e Parameter Settings

e Gateway other configuration

e ThingsBoard reference flowchart

Importing/exporting data collection configuration

Device Supervisor provides four CSV configuration files for data collection configuration (To use the Alarm
policy configuration file function, App version should bel.2.5 and later). You can quickly configure data

collection by importing or exporting configuration files. Each configuration file contains the following items:
e device.csv: The device configuration file, which contains the following parameters:

— Device Name: The device name.

1.1. Device Supervisor App User Manual 43

InGateway Documentation, Release 0.0.1

Protocol: The communication protocol, such as ModbusTCP.

— Ip/Serial: Enter the IP address for Ethernet devices, and enter R3485 or RS232 for serial port
devices.

— Port: The communication port number of the Ethernet device.

— Rack (Only ISO on TCP devices): The rack number of the device.

Slot (Only ISO on TCP devices): The slot number of the device.

— Mode (Ounly ISO on TCP devices): The ISO on TCP mode. Valid values are TSAP and Rack/Slot.
— Slave (Only Modbus devices): The address of the slave station.

Byte Order (Only Modbus devices): The byte order. Valid values are abcd, badc, cdab, and
dcba.

The export method is to export the device list on the Device List page.

or / Device List

Device List operation: () 1,

57-1200 5} Modbus |
50-on-TCP ModbusTCP
P: 10.5.16.166

I
>

P:10.5.16.77 =

Total 2 items | 1 ‘

Variable Table(S7-1200) Operation: f, 4

Name Group Data Type Address Value Description Time Operation ()

® test] default BOOL 0.0 false 2020-06-02 16:32:01 2

o

® test2 default FLOAT DB6.14 245

N

2020-06-02 16:32:01 2

[m]

Total 2 items ‘ 1 ‘ 50/ page

The following is a configuration example:

Device Name Protocol Ip Fort Slave Evte Order
Modbustest ModbusTCP 10.5. 16, B2 B0z 1 cdab

e var.csv: The variable configuration file, which contains the following parameters:
— Var Name: The variable name.

Device: The device of the variable.

— Protocol: The communication protocol.

— Dbnumber (Only ISO on TCP devices): The DB number.

Register Type (Only ISO on TCP devices): The register type, such as DB.

— Register Addr: The register address.

— Register Bit: The bit offset.

Data Type: The data type.

44 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Read Write: The read/write permission. Valid values are Read/Write, Write, and Read.

Float Repr: The number of decimal places. Valid values are 1~6.

Mode: The collection mode. Valid values are realtime and onchange.

Unit: The unit.

Size: The string length.
— Desc: The description.
— Group: The group.

The export method is to export the variable list on the Device List page.

Device List

Device List Operation: () 1, 4
S7-1200 u} Madbus u}
SO-on-TCP ModbusTCP
2 2
P: 10.5.16.166 - P:10.5.16.77 -
Total 2 items ‘ 1 ‘
Variable Table(S7-1200) Operation: 1,
Name Group Data Type Address Value Description Time Operation (D
o testt defauit B00L 00 false 2020-06-02 16:33:31 20
* test2 default FLOAT DB6.14 24.5 2 2020-06-02 16:33:31 20

Total 2items ‘ 1 ‘ 50/ page

The following is a configuration example:

A B = U £ r Q H) [N L Vi N]
Var Name Device Protecel Dbrumber Register Type Register Addr Register Bit Data Type Read Write Float Repr Mode Unit Size Desc Croup
5P1 87-1200 I50-on-TCP 01 0 0 BOOL read/write 2 realtine 1 default

group.csv: The group configuration file, which contains the following parameters:
— Group Name: The group name.
— Polling Interval: The collection interval.

— Upload Interval: The upload interval. Left it empty when the group type is alarm.

Group Type: The group type. Valid values are alarm and collect.

The export method is to export groups on the Group page.

1.1.

Device Supervisor App User Manual 45

InGateway Documentation, Release 0.0.1

€ = £ ve e 1= Lroup
Operation: 1,] /¢,
Uploadi
MName Type Polling Interval(S) ploacing Operation @
Interval(S)
warning Alarm 10 - &
default Collect 10 10 Z
group2 Collect 5 5 Z 0
warn_group Alarm 5 - Z 0
Total 4 items ‘ 1 ‘ 50 / page
The following is a configuration example:
= e’ i

Group Name PFolling Interval Uplead Interval Croup Tvpe
default 10 10 collect

e warn.csv: The alarm policy configuration file, which contains the following parameters:

Warn Name: The alarm name.
Group: The group.

Quotes: Whether to reference the variable. 0 means “use new variable” , 1 means “reference

existing variable” .
Device: The device of the alarm variable.
Var Name: The referenced variable name. Leave blank when the variable is not referenced.

Conditionl: The alarm condition 1. Eq means “equal to” , Neq means “not equal to” ;| Gt
means “greater than” | Gne means “greater than or equal to” | Lne means “less than or equal

to” , Lt means “less than” .
Operandl: The alarm threshold 1.

Combine Method: The alarm condition connection mode. None means empty, And means &&,

Or means ||

Condition2: The alarm condition 2.
Operand2: The alarm threshold 2.
Alarm Content: The alarm description.

Register Addr: The alarm variable address.

46

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

— Dbnumber: The DB number of the variable when the alarm variable register type is DB.

— Data Type: The alarm variable data type. Leave it blank when configuring EtherNET /IP and
OPCUA variables.

— Symbol: The alarm variable tag name. Need to fill in when configuring EtherNET/IP variables.
— Register Type: The alarm variable register type.

— Register Bit: The bit offset of the variable when the data type of the alarm variable is BOOL
or BIT.

— Namespace Index: The namespace index when the alarm variable is the OPCUA protocol.
— Identifier: The identification when the alarm variable is the OPCUA protocol.

— Identifier Type: The ID type when the alarm variable is the OPCUA protocol.

— Float Repr: The number of decimal places.

The export method is to export alarms on the Alarm page.

Edge Computing / Device Supervisor / Alarm

Realtime Alarms Alarm Strategy History Alarms

Al Operation: 1,

Trigger

Name Device Target Address Description Group Operation

Condition

Warn1 =1 EIP ZB.LEN.16 Test warning 2 a

Total 1 item | 1 ‘ 50 / page

Messages Management (custom MQTT publish/subscribe)

You can choose Edge Computing > Device Supervisor > Cloud Service and configure MQTT
connection parameters. You can configure the MQTT messages, data source, and other parameters for the
data to be uploaded, and customize the data upload and processing logic for the MQTT publish and subscribe
topics in Python. In this way, you can perform data upload and delivery with multiple types of MQTT servers

without secondary development. The following describes how to use Messages Management.
e Configure Publish Messages
o Configure Subscribe Messages
e Device Supervisor API Description

e Device Supervisor API Callback Function Description

Configure Publish Messages

To customize a publish message, configure the following items:

1.1. Device Supervisor App User Manual 47

InGateway Documentation, Release 0.0.1

e Name: The custom publish name.

e Topic: The publish topic, which must be consistent with the topic subscribed to by the MQTT server.

e Qos(MQTT): The publish QoS, which is recommended to be consistent with that of the MQTT server.

— 0: The message is sent only once, without retry.

— 1: The message is sent at least once to ensure that it reaches the MQTT server.

— 2: Ensure that the message reaches the MQTT server and the MQTT server receives it only once.

e Group Type: When publishing variable data, select Collect, and then only Collect Group is available

in Group. When publishing alarm data, select Alarm, and then only Alarm Group is available in

Group.

e Group: After a group is selected, data of all variables in this group is uploaded to the MQTT server

based on this publish configuration. You can select multiple groups.

e Main Function: The name of the main function (entry function), which must be consistent with that

in the script.

e Script: Use the Python code to customize the packaging and processing logic. Main functions in

publish include the following parameters:

— Parameter 1: Device Supervisor sends the collected variable data to this parameter in the fol-

lowing format:

* Variable data format:

'timestamp': 1589434519.5458372,
'group_name': 'default',
'values':

—variable name, and variable value.

{
'S7-1200":
{

#The PLC mname.

'Testl':
{
'raw_data': False,
'status': 1
—~the collection s abmnormal.
.
'Test2':
{
'raw_data': 2,

'status': 1

#The collection status. If the walue

#The timestamp when data 7s generated.
#The name of the collect group.

#The wvariable data dictionary, including the PLC name,

#The wvariable name.

#The wvariable value.

is not 1,

(continues on next page)

48 Chapter 1.

InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

*

(continued from previous page)

Alarm data format:

{

'timestamp': 1589434527.3628697, #The timestamp when an alarm sy
—generated.

'group_name': 'warning', #The name of the alarm group.

'values': #The alarm data dictionary, including the alarm informationg

—such as alarm name.
{
'Warnl': #The alarm name.
{
'timestamp': 1589434527, #The timestamp when an alarm s,
—generated.
'current': 'on', #The alarm status. on: The alarm has beeng
—triggered. off: The alarm has been cleared.
'status': 0, #The alarm status. 0: The alarm has beeny
—~triggered. 1: The alarm has been cleared.
'value': 33, #The wvalue of the alarm wvariable when the alarm,
—1s triggered.
'alarm_content': 'The speed has exceeded 30.', #The alarm,
—~description.

'level': 1 #The reserved field.

— Parameter 2: It is the API provided by Device Supervisor. For more information about it, see

Device Supervisor API Description.

The following are examples of common custom publish methods. Do not use the mqtt_publish or save_data

method together with the return command:

e Publish example 1: Upload the variable data in return mode

In this example, the variable data is uploaded in return mode, the processed variable data is sent to
Device Supervisor through the return command. Device Supervisor automatically sequential uploads
the variable data by collection time to the MQTT server according to the topic and QoS configured
in the publish. If the variable data failed to send, it caches the variable data, waits until the MQTT

1.1.

Device Supervisor App User Manual 49

InGateway Documentation, Release 0.0.1

connection is normal, and then sequential uploads the variable data by collection time to the MQTT

server. The following is an example of publish and code configuration:

Edit Publish

* Name: default

Topic: | v1/o00yyy

* Qos(MQTT):

Group Type: ® Collect Alarm

* Group: default
* Main Function: wvars_upload_test Matches the name of the entry function in the script

* Script:

def vars_upload test(data_collect, wizard api): #Define th
value list = [] #Define the data list.
for device, val dict in data_collect[values™].items()
value dict = { #Customize the data dictionary.
"Device”: device,
"timestamp”: data collect["timestamp
"Data™: {}
}
for id, wal in val dict.items(): #Traver
value dict["Data"][id] = val["raw_data
value_list.append(value dict) #Add data in value d
logging.info(value list) #Print data in value list in
return value list #Send value list to the app, which t

Cancel

import logging

win

Logs are generally printed in the gateway in the following ways:

1.import logging: Use logging.info(XXX) to print logs. Logs printed in this way are,
—not controlled by the log level parameter on the Parameter Settings page.

2. from common.Logger tmport logger: Use logger.info(XXX) to print logs. Logsy,
—printed in this way are controlled by the log level parameter on the Parameter,

—Settings page.

nnn

def vars_upload_test(data_collect, wizard_api): #Define the main function for,

—publish.

(continues on next page)

50

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

value_list = [] #Define the data list.
for device, val_dict in data_collect['values'].items(): #Traverse the values,
—dictionary. The dictionary contains the device name and the variables of they
—device.
value_dict = { #Customize the data dictionary.
"Device": device,
"timestamp": data_collect["timestamp"],
"Data": {}
}
for id, val in val_dict.items(): #Traverse wvariables and assign values for,
—~the Data dictionary.
value_dict["Data"] [id] = val["raw_data"]
value_list.append(value_dict) #4dd data in value_dict to walue_list ing
—sequence.
logging.info(value_list) #Print data in value_list in app logs in the following,
< format: [{'Device’': 'S7-1200', 'timestamp': 1589538347.5604711, 'Data': {'Testl’:y
—False, 'Test2': 12}}].
return value_list #Send wvalue_list to the app, which then sequential uploads ity
—~to the MUTT server by collection time. If it fatls to be sent, cache the data and,

—sequential upload it to the MUTT server by collection time after the connectiony

—Tecovers.

e Publish example 2: Upload the alarm data in return mode

In this example, alarm data is uploaded. The following is an example of publish and code configuration:

1.1.

Device Supervisor App User Manual 51

InGateway Documentation, Release 0.0.1

Edit Publish X

Mame: default
*Topic: | alfoxfyyy
*# Qos(MQTT): 1

Group Type: Collect (@) Alarm

* Group: warning
* Main Function: alarms_upload_test Matches the name of the entry function in the script
* Script: import logging

Logs are generally printed in the gateway in the following
1.import logging: Use logging.info(XXX) to print logs. Log:
2.from common.Logger import logger: Use logger.info(XXX) tc

def alarms_upload_test(data_collect, wizard_api): #Define

alarm_list = [] #Define the alarm list.
for alarm_name, alarm_info in data_collect['values'].i
alarm _dict = { #Customize the data dictionary.
"Alarm_name”: alarm_name,
"timestamp”: data collect["timestamp
"Alarm_status”: alarm_info["current’

Cancel ﬂ

import logging

Logs are generally printed in the gateway in the following ways:

1.import logging: Use logging.info(XXX) to print logs. Logs printed in this way are,
—not controlled by the log level parameter on the Parameter Settings page.

2. from common.Logger timport logger: Use logger.info(XXX) to print logs. Logsy,
—printed in this way are controlled by the log level parameter on the Parameter,

—Settings page.

nmn

def alarms_upload_test(data_collect, wizard_api): #Define the main function fory,

—publish.
alarm_list = [] #Define the alarm list.

for alarm_name, alarm_info in data_collect['values'].items(): #Traverse the,

5 5 K icontinues on next page)

—alarm generation time.

52 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

alarm_dict = { #Customize the data dictionary.
"Alarm _name": alarm_name,
"timestamp": data_collect["timestamp"],
"Alarm_status": alarm_info['current'],
"Alarm_value": alarm_info['value'],
"Alarm_content": alarm_info['alarm_content']
}
alarm_list.append(alarm_dict) #4dd data in alarm_dict to alarm_list ing
—sequence.
logging.info(alarm_list) #Print alarm_list in app logs.
return alarm_list #Send alarm_list to the app, which then sequential uploads ity
—to the MUTT server by collection time. If it fatls to be sent, cache the data and,

—sequential upload it to the MUTT server by time after the connection recovers.

o Publish example 3: Use mqtt_publish to upload the variable data and use save_data to save the

variable data that failed to upload.

In this example, the variable data is uploaded to the MQTT server through mqtt_publish. If the
variable data failed to upload due to MQTT connection failure, the topic, QoS, and the variable data
are saved to the database through save_data. The saved variable data will be uploaded by saving
order to the MQTT server based on the topic and QoS in the data after the MQTT connection is

resumed to normal. The following is an example of publish and code configuration:

1.1.

Device Supervisor App User Manual 53

InGateway Documentation, Release 0.0.1

Edit Publish X

* Mame: default
*Topic: | v1/x/fyyy
* Qos(MQTT): 1
Group Type: (® Collect Alarm
* Group: default ¥
* Main Function: vars_cache_test Matches the name of the entry function in the script

* Script: from common.lLogger import logger
import json
from datetime import datetime
Logs are generally printed in the gateway in the following
1.import logging: Use logging.info()XXX) to print logs. Log:
2.from common.Logger import logger: Use logger.info(XXX) tc

def wvars_cache_test(data collect, wizard api): #Define the

value list = [] #Define the data list.
utc_time = datetime.utcfromtimestamp(data_collect["tim
for device, val _dict in data_collect['values'].items()
value dict = { #Customize the data dictionary.
"DeviceSN™: device,
"Time™: utc time.strftim

Cancel ﬂ

from common.Logger import logger

import json

from datetime import datetime

Logs are generally printed in the gateway in the following ways:

1.%mport logging: Use logging.info(XXX) to print logs. Logs printed in this way are,
—not controlled by the log level parameter on the Parameter Settings page.

2. from common.Logger import logger: Use logger.info(XXX) to print logs. Logs,
—printed in this way are controlled by the log level parameter on the Parameter,

—Settings page.

nimnn

def vars_cache_test(data_collect, wizard_api): #Define the main function for,

—publish.

(continues on next page)

54

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

value_list = [] #Define the data list.
utc_time = datetime.utcfromtimestamp(data_collect["timestamp"]) #Convert the,
—Linux timestamp to the UTC time.
for device, val_dict in data_collect['values'].items(): #Traverse the walues,
—dictionary. The dictionary contains the device name and the wvariables of they
—device.
value_dict = { #Customize the data dictionary.
"DeviceSN": device,
"Time": utc_time.strftime (') Y-Ym-/dTH: WM %S . /fZ"),
"Data": {}
3
for id, val in val_dict.items(): #Traverse wvariables and assign values fory
—the Data dictionary.
value_dict["Data"] [id] = val["raw_data"]
value_list.append(value_dict) #4dd data in value_dict to walue_list ing
—sequence.
if not wizard_api.mqtt_publish("v1l/xxx/yyy", json.dumps(value_list), 1): #Call,
—the mqtt_publish method of the wizard_api module to send value_list to the MQTT,
—server based on the topic "vl/zzz/yyy" and QoS level 1, and then check whether ity
—1s successfully sent.
value_list = {"topic": "v1/xxx/yyy", "qos": 1, "payload": value_list}
wizard_api.save_data(value_list) #If it fails to be sent, cache the datay
—and upload tt to the MUTT server by time after the comnection recovers.
logger.info("Save data:/s" %value_list)

logger.info(value_list) #Print wvalue_list in app logs.

o Publish example 4: Use mqtt_publish to upload the variable data and use save_data to save the
variable data that failed to upload.

In this example, the variable data is uploaded to the MQTT server through mqtt_publish. If the
variable data failed to upload due to MQTT connection failure, the variable data and group name are
saved through save_data. The saved variable data will be uploaded by saving order to the MQTT
server based on the topic and QoS associated with the group in the cloud service after the MQTT
connection is resumed to normal. Do not use the mqtt_publish or save_data method together with

the return command. The following is an example of publish and code configuration:

1.1. Device Supervisor App User Manual 55

InGateway Documentation, Release 0.0.1

Edit Publish X

* Mame: default
Topic: | v1/om/yyy
* Qos(MQTT): 1
Group Type: @) Collect Alarm
* Group: default ¥
Main Function: = vars_cache_test Matches the name of the entry function in the script
Script: from common.lLogger import logger
import json
from datetime import datetime
Logs are generally printed in the gateway in the following

1.import logging: Use logging.info(XXX) to print logs. Log:
2.from common.Logger import logger: Use logger.info(300() tc

def vars_cache_test(data_collect, wizard_api): #Define the

value_list = [] #Define the data list.
utc_time = datetime.utcfromtimestamp(data_collect["tim
for device, val dict in data_collect['values'].items()
value dict = { #Customize the data dictionary.
"DeviceSN™: device,
“"Time": utc time.strftim

Cancel ﬂ

from common.Logger import logger

import json

from datetime import datetime

Logs are generally printed in the gateway in the following ways:

1.%mport logging: Use logging.info(XXX) to print logs. Logs printed in this way are,
—not controlled by the log level parameter on the Parameter Settings page.

2. from common.Logger import logger: Use logger.info(XXX) to print logs. Logsy,
—printed in this way are controlled by the log level parameter on the Parameter,

—Settings page.

nmnn

def vars_cache_test(data_collect, wizard_api): #Define the main function for,

—publish.

(continues on next page)

56

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

value_list = [] #Define the data list.
utc_time = datetime.utcfromtimestamp(data_collect["timestamp"]) #Convert the,
—Linux timestamp to the UTC time.
for device, val_dict in data_collect['values'].items(): #Traverse the walues,
—dictionary. The dictionary contains the device name and the wvariables of they
—device.
value_dict = { #Customize the data dictionary.
"DeviceSN": device,
"Time": utc_time.strftime (') Y-Ym-/dTH: WM %S . /fZ"),
"Data": {}
3
for id, val in val_dict.items(): #Traverse wvariables and assign values fory
—the Data dictionary.
value_dict["Data"] [id] = val["raw_data"]
value_list.append(value_dict) #4dd data in value_dict to walue_list ing
—sequence.
if not wizard_api.mqtt_publish("v1l/xxx/yyy", json.dumps(value_list), 1): #Call,
—the mqtt_publish method of the wizard_api module to send value_list to the MQTT,
—server based on the topic "vl/zzz/yyy" and QoS level 1, and then check whether ity
—1s successfully sent.
wizard_api.save_data(value_list, 'default') #If <t fails to be sent, cache,
—the data and upload it to the MUTT server by time after the connection recovers.
logger.info("Save data:/s" %value_list)

logger.info(value_list) #Print walue_list in app logs.

o Publish example 5: Use get_tag_config to get the configuration of devices, variables, and alarms.

In this example, when the app is restarted each time, the configuration of devices, variables, and alarms
are gotten through get_tag_config respectively and then sent to the MQTT server(This example is
only useful for getting Rackslot pattern point tables for ISO on TCP and Modbus). The following is
an example of publish and code configuration:

1.1.

Device Supervisor App User Manual 57

InGateway Documentation, Release 0.0.1

Edit Publish X

* Name: default
* Topic: = Config/config
+ Qos(MQTT): 1
Group Type: (@ Collect Alarm
* Group: default
* Main Function: upload_tagconfig Matches the name of the entry function in the script

* Script: from common.Logger import logger
import json

Logs are generally printed in the gateway in the following
1.import logging: Use logging.info(XXX) to print logs. Log:
2.from common.Logger import logger: Use logger.info(30X{) t«

IS_UPLOAD CONFIG = True #Define a variable to determine w

def upload tagconfig(recv, wizard api): #Define the main
global IS UPLOAD CONFIG #Declare that the variable is

if IS UPLOAD CONFIG: #Determine whether to acquire an
wizard api.get tag config(tagconfig) #Call the re
IS_UPLOAD CONFIG = False #Do not upload the confi

Cancel ﬂ

from common.Logger import logger

import json

win

Logs are generally printed in the gateway in the following ways:

1.%mport logging: Use logging.info(XXX) to print logs. Logs printed in this way are,
—not controlled by the log level parameter on the Parameter Settings page.

2. from common.Logger import logger: Use logger.info(XXX) to print logs. Logs,
—printed in this way are controlled by the log level parameter on the Parameter

—Settings page.

nmn

IS_UPLOAD_CONFIG = True #Define a variable to determine whether to acquirTe and,

—upload the configuration.

(continues on next page)

58 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

def upload_tagconfig(recv, wizard_api): #Define the main function for publish.
global IS_UPLOAD_CONFIG #Declare that the wariable is a global wvariable.
if IS_UPLOAD_CONFIG: #Determine whether to acquire and upload they
—configuration.
wizard_api.get_tag_config(tagconfig) #Call the recall_data method of the,
—wizard_api module to define the callback function name of the method as tagconfig.
IS_UPLOAD_CONFIG = False #Do not upload the configuration again after ity

—1s acquired and uploaded.

def tagconfig(config, tail, wizard_api): #Define the callback function tagconfig,
—used to acquire the configuration.
logger.info(config) #Print the configuration information, including the device,
—group, vartable, and alarm configuration.
deviceConfiguration_list = [] #Define the list of device configuration.
for device in config['devices']: #Traverse the device configuration.
deviceInfo = {} #Define the device information dictionary.
if device['protocol'] == "ModbusTCP": #Determine whether the devicey
—communication protocol s ModbusTCP.
deviceInfo["Device"] = device['device _name']
deviceInfo["PLCProtocol"] = devicel['protocol']
deviceInfo["IP Address"] = devicel['ip']
deviceInfo["Port"] = devicel['port']
deviceInfo["SlaveAddress"] = device['slave']
deviceInfo["Endian"] = device['byte_order']
deviceConfiguration_list.append(deviceInfo) #Add devicelnfo toy
—deviceConfiguration_list in sequence.
elif device['protocol'] == "ModbusRTU": #Determine whether the device,
—communication protocol ts ModbusRTU.
deviceInfo["Device"] = device['device name']
deviceInfo["PLCProtocol"] = device['protocol']
deviceInfo["Port"] = device['serial']
deviceInfo["Baudrate"] = device['baudrate']
deviceInfo["DataBits"] = device['bytesize']
deviceInfo["Parity"] = device['parity']
deviceInfo["StopBits"] = devicel['stopbits']
deviceInfo["SlaveAddress"] = device['slave']
deviceInfo["Endian"] = device['byte_order']
deviceConfiguration_list.append(deviceInfo)

elif devicel['protocol'] == "ISO-on-TCP": #Determine whether the device,

—communication protocol ts ISO-on-TCP.

(continues on next page)

1.1. Device Supervisor App User Manual 59

InGateway Documentation, Release 0.0.1

(continued from previous page)

deviceInfo["Device"] = device['device name']
deviceInfo["PLCProtocol"] = device['protocol']
deviceInfo["IP Address"] = device['ip']
deviceInfo["Port"] = devicel['port']
deviceInfo["Rack"] = devicel['rack']
deviceInfo["Slot"] = device['slot']
deviceConfiguration_list.append(deviceInfo)
logger.info(deviceConfiguration_list)
wizard_api.mqtt_publish("Config/DeviceInfo", json.dumps(deviceConfiguration_
—list), 1) #Call the mqtt_publish method of the wizard_api module to sendy
—deviceConfiguration_list to the MTT server based on the topic "Config/Devicelnfo
— " and (oS level 1.

tagConfiguration_list = [] #Define the list of wartable configuration.
device_group_info_dict = {} #Define the group information dictionary of ay
—device.
group_info_dict = {} #Define the group information dictionary.
for groupinfo in configl['groups']l: #Traverse the groups in the configuration.
group_info_dict [groupinfo["group_name"]] = groupinfo #Map the group names,
—and group information.
for device in configl['devices']: #Traverse the devices in the configuration.
group_list= [] #Define the group list of a device.
for var in config['vars']: #Traverse the variables in the configuration.
if devicel['device_name'] == var['device'] and var['group'] not in group_
—list: #Determine whether the wvariable is in the device. If the group of the,
—wvartable is not in group_list, add the group to group_list.
group_list.append(var['group'])
device_group_info_dict[device['device_name']l] = group_list #Map the devicesy
—and the group lists of the devices.
for device, group_list in device_group_info_dict.items(): #Traverse the group,
—1information dictionary of a device.
if group_list == []: #If the group list of the device is empty, mo wvariable,
—1s defined for the device. Then, skip this device.
continue
tagConfiguration = {} #Define the wariable configuration dictionary.
tagConfiguration["Device"] = device #Add device information.
tagConfiguration["Collections"] = []
for group in group_list: #Traverse the groups of a device and add group,

—1information.

(continues on next page)

60

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

group_info = {}
group_info["CollectionName"] = group
group_info["SampleRate"] = group_info_dict[group] ["polling_interval"]
group_info["PublishInterval"] = group_info_dict[group] ["upload_interval
G
group_info["TagData"] = []
tagConfiguration["Collections"].append(group_info)
for var in config['vars']: #Traverse the variables in the configuration.
if var(['device'] != device or var['group'] != group: #If the,
—wvariable does not belong to the device and group, skip this wvariable.
continue
index_number = tagConfiguration["Collections"].index(group_info)
< #0btain the index of the group in tagConfiguration/["Collections"].
data_info = {} #Define the wvariable information dictionary.
data_info["Tag"] = var["var_name"]
data_info["Address"] = var["address"]
data_info["ValueType"] = var["data_type"]
data_info["AccessLevel"] = var["read write"]
data_info["Mode"] = var["mode"]
data_info["Unit"] = var["unit"]
data_info["Description"] = var["desc"]
tagConfiguration["Collections"] [index_number] ["TagData"].
—append(data_info) #4dd wvariable information to TagData of the specified group.
tagConfiguration_list.append(tagConfiguration) #Add the tagConfiguration toy
—tagConfiguration_list in sequence.
logger.info(tagConfiguration_list) #Print the variable Configuration.
for tagConfiguration in tagConfiguration_list: #Traverse the wvariable,
—Configuration of each device and upload them to the MUTT server.
wizard_api.mqtt_publish("Config/TagConfiguration", json.
—dumps (tagConfiguration), 1) #Call the mqtt_publish method of the wizard_apiy
—module to send tagConfiguration_list to the MITT server based on the topic

< "Config/TagConfiguration” and (oS level 1.

alarmConfiguration_list = [] #Define the alarm configuration.

for alarm in config['warning']: #Traverse the alarms in the configuration.
alarmInfo = {} #Define the alarm information dictionary.
alarmInfo['Warn name'] = alarm['warn name']
alarmInfo['Group'] = alarm['group']

alarmInfo['Alarm content'] = alarm['alarm_content']

(continues on next page)

1.1.

Device Supervisor App User Manual 61

InGateway Documentation, Release 0.0.1

(continued from previous page)

alarmInfo['Conditioni']

alarmInfo['Operandi'] =

alarmInfo['Condition2']

alarmInfo['Operand2'] =

alarmInfo['Var_name'] =

—and (oS level 1.

= alarm['conditioni']

alarm['operandl']

alarmInfo['Combine method'] = alarm['combine method']

= alarm['condition2']

alarm['operand2']

alarmInfo['Device'] = alarm['device']

alarm['var_name']

alarmInfo['Address'] = alarm['address']

—alarmConfiguration_list in sequence.

logger.info(alarmConfiguration_list) #Print the alarm configuration.

< 1) #Call the mqgtt_publish method of the wizard_api module to sendy

alarmConfiguration_list.append(alarmInfo) #4dd the alarm information toy

wizard_api.mqtt_publish("Config/AlarmInfo", json.dumps(alarmConfiguration_list),

—alarmConfiguration_list to the MQTT server based on the topic "Config/AlarmInfo’,

o Publish example 6: Use get_global_parameter to get custom parameter set in Parameter Settings.

In this example, custom parameter set in Parameter Settings are gotten through device_id, and

the MQTT topic is configured with the wildcard ${device_id}. The following is an example of publish

and code configuration:

]
o
=]

=)
[11]
[

Global Parameters

Parameters

Supervisor Global Paramesters

Parameters Value

Operation @

catch_recording 100000 Z
device id 1 2 0
log_level INFO Z
warning_recording 2000 Z

62

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Edit Publish X

+* Name: default
+ Topic: global/${device_id}/parameter
* Qos(MQTT): 1
Group Type: (® Collect Alarm
* Group: default
* Main Function: vars_upload_test Matches the name of the entry function in the script
* Script: import logging

Logs are generally printed in the gateway in the following
1.import logging: Use logging.info(XXX) to print logs. Log:
2.from common.Logger import logger: Use logger.info(XXX) tc

def wvars_upload_test(data_collect, wizard_api): #Define th

global parameter = wizard api.get global parameter() #
logging.info(global parameter) #Print the global varia
value list = [] #Define the data list.
for device, val _dict in data_collect['values'].items()
value_dict = { #Customize the data dictionary.
"Device”: device,
"DeviceID": global parameter[“device
"timestamp

Cancel n

import logging

win

Logs are generally printed in the gateway in the following ways:

1.import logging: Use logging.info(XXX) to print logs. Logs printed in this way are,
—not controlled by the log level parameter on the Parameter Settings page.

2. from common.Logger timport logger: Use logger.info(XXX) to print logs. Logsy,
—printed in this way are controlled by the log level parameter on the Parameter,

—Settings page.

nnn

def vars_upload_test(data_collect, wizard_api): #Define the main function for,
—publish.
global_parameter = wizard_api.get_global_parameter() #Define the Custom,

—Parameter wvartables.

(continues on next page)

1.1.

Device Supervisor App User Manual 63

InGateway Documentation, Release 0.0.1

(continued from previous page)

logging.info(global_parameter) #Print the Custom Parameter wvariables.
value_list = [] #Define the data list.
for device, val_dict in data_collect['values'].items(): #Traverse the walues,
—dictionary. The dictionary contains the device name and the variables of they
—device.
value_dict = { #Customize the data dictionary.
"Device": device,
"DevicelID": global_parameter["device_id"], #Acquire they
—device ID defined in Custom Parameter.
"timestamp": data_collect["timestamp"],
"Data": {}
}
for id, val in val_dict.items(): #Traverse wvariables and assign values fory
—the Data dictionary.
value_dict["Data"][id] = val["raw_data"]
value_list.append(value_dict) #4dd data in value_dict to walue_list ing
—sequence.
logging.info(value_list) #Print data in value_list in app logs in the following,
— format: [{'Device': 'S7-1200', 'DeviceID': '1', 'timestamp': 1589538347.5604711,
— 'Data': {'Testl': False, 'Test2': 12}}].
return value_list #Send wvalue_list to the app, which then sequential uploads ity
—to the MYTT server by collection time. If it fails to be sent, cache the data and,

—sequential upload it to the MUTT server by time after the connection recovers.

Configure Subscribe Messages

Custom subscribe message contains the following items:

Name: The custom subscribe name.
Topic: The subscribe topic, which must be consistent with the topic published by the MQTT server.
Qos (MQTT): The subscribe QoS, which is recommended to be consistent with that of the MQTT server.

Main Function: The name of the main function (entry function), which must be consistent with that

in the script.

Script: Use the Python code to custom the packaging and processing logic. Main functions in

subscribe include the following parameters:
— Parameter 1: It is the received topic. The data type is string.

— Parameter 2: It is the received data. The data type is string.

64

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

— Parameter 3: It is the API provided by Device Supervisor. For more information about it, see

Device Supervisor API Description.
The following are four common custom subscribe methods:

e Subscribe example 1: Deliver the variable name and value and write the PLC data but do not return

the write result.

In this example, a command is delivered by the MQTT server to modify the variable value. The

following is an example of publish and code configuration:

Edit Subscribe X

+# Mame: Deliver data

* Topic: | write/plc
* Qos(MQTT): | 1
* Main Function: ctl_test Matches the name of the entry function in the script

* Script: import logging
import json

def ctl_test(topic, payload, wizard api): #Define the main

loggin nfo(topic) #Print the subscribe topic. Assume
logging.info(payleoad) #Print the subscribe data. Assum
payload = json.loads(payload) #Deserialize subscribe d
if payload["method™] == "setValue”: #Check whether the
message = {payload[“TagName"]:payload[“TagValue™]}
wizard api.write_plc values(message) #Call the wri

import logging

import json

def ctl_test(topic, payload, wizard_api): #Define the main function for subscribe.
logging.info(topic) #Print the subscribe topic. Assume that the topic is "write/
—plc”.
logging.info(payload) #Print the subscribe data. Assume that the payload datay
—1s {"method":"setValue", "TagName":"SP1", "TagValue":12.3}.

payload = json.loads(payload) #Deserialize subscribe data.

(continues on next page)

1.1. Device Supervisor App User Manual 65

InGateway Documentation, Release 0.0.1

(continued from previous page)

if payload["method"] == "setValue'": #Check whether the data is written.
message = {payload["TagName"]:payload["TagValue"]l} #Define the message to,
—be delivered, including the variable name and value to be delivered.
wizard_api.write_plc_values(message) #Call the write_plc_values method of,
—the wizard_api module to deliver data from the message dictionary to the,

—specified variable.

Subscribe example 2: Deliver the device name, and variable name and value and write the PLC data

but do not return the write result.

In this example, a command is delivered by the MQTT server to modify the variable value. The

following is an example of publish and code configuration:

Edit Subscribe

* Mame: Deliver data
Topic: write/plc
* Qos(MQTT): 1
+ Main Function: ctl_test Matches the name of the entry function in the script

Script: import logging
import json

def ctl test(topic, payload, wizard_api): #Define the main
logging.info(topic) #Print the subscribe topic.
logging.info(payload) #Print the subscribe data.
f#Assume that the payload data is {"method™:"setValue”,
payload = json.loads(payload) #Deserialize subscribe d

data_dict = {payload["TagName"]:payload["TagValue™]} #
var_device = payload["Device"] #Define the name of the
if payload["method”] == "setValue": #Check whether the
message = {var_device:data_dict} #Define the messa
wizard api.write plc values(message) #Call the wri

import logging

import json

def ctl_test(topic, payload, wizard_api): #Define the main function for subscribe.

(continues on next page)

66

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

logging.info(topic) #Print the subscribe topic.

logging.info(payload) #Print the subscribe data.

#Assume that the payload data is {"method":"setValue", "Device":"Modbus_test",
< "TagName": "SP1", "TagValue":12.3}.

payload = json.loads(payload) #Deserialize subscribe data.

data_dict = {payload["TagName"]:payload["TagValue"]l} #Define the datay
—~dictionary to be delivered, including the variable name and value to be delivered.
var_device = payload["Device"] #Define the name of the device.
if payload["method"] == "setValue": #Check whether the data is written.
message = {var_device:data_dict} #Define the message to be delivered,
—1including the device name and data dictionary to be delivered.
wizard_api.write_plc_values(message) #Call the write_plc_values method of,

—the wizard_api module to deliver data from the message dictionary to the,
—specified variable.

e Subscribe example 3: Write the variable data and return the write result.

In this example, a command is delivered by the MQTT server to modify the variable value and return

the modification result. The following is an example of publish and code configuration:

1.1. Device Supervisor App User Manual 67

InGateway Documentation, Release 0.0.1

Edit Subscribe X

* Mame: Deliver data

* Topic: | request/vi

Qos(MQTT): 1
Main Function: ctl_test Matches the name of the entry function in the script
* Script: data_dict = {payload| “"Taghame™ |:payload| lagValue™ |} #

var_device = payload[“"Device”] #Define the name of the
if payload["method”] == "setValue”: #Check whether the
message = {var_device:data_dict} #Define the messa
ack tail = [topic.replace(’'request”, ‘response'),
logging.info(message)
wizard_api.write_plc values(message, ack, ack tail

ack(send_result, ack tail, wizard api): #Define the ca
topic = ack_tail[e] #Define the response topic.
if isinstance(send_result,tuple): #Check whether the d
resp_data = {"Status™:"timeout”, "Data":ack tail[1l
else:
resp_data = {"Status™:send result[8]["result™], "D
wizard api.mgtt_publish(topic, json.dumps(resp data),

Cancel n

import logging

import json

def ctl_test(topic, payload, wizard_api): #Define the main function for subscribe.
logging.info(topic) #Print the subscribe topic. Assume that the topic is
< "request/v1".
logging.info(payload) #Print the subscribe data.
#Assume that the payload data is {"method":"setValue", "Device":"Modbus_test",
— "TagName": "SP1", "TagValue":12.3}.
payload = json.loads(payload) #Deserialize subscribe data.
data_dict = {payload["TagName"]:payload["TagValue"l} #Define the datay
—dictionary to be delivered, including the variable name and value to be delivered.
var_device = payload["Device"] #Define the name of the device.
if payload["method"] == "setValue": #Check whether the data is written.
message = {var_device:data_dict} #Define the message to be delivered,

—1tncluding the device name and data dictionary to be delivered.

ack_tail = [topic.replace('request', 'response'), message] #Define the,
eonfirmatton—data;, trctudingthe response—topic—and message -
(continues on next page)

68

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

logging.info(message)

wizard_api.write_plc_values(message, ack, ack_tail, timeout = 0.5) #Call,
—the write_plc_values method of the wizard_api module to deliver data from the,
—message dictionary to the specified variable. Define the callback function of

—this method as ack and deliver ack_tail to the ack function.

def ack(send_result, ack_tail, wizard_api): #Define the callback function ack.
topic = ack_tail[0] #Define the response topic.
if isinstance(send_result,tuple): #Check whether the data type of send-resulty
—1s tuple. If so, the delivery times out.
resp_data = {"Status":"timeout", "Data":ack_tail[1]} #Define the response,
—for delivery timeout.
else:
resp_data = {"Status":send_result[0] ["result"], "Data'":ack_taill[1]} #Define,
—the response i1f the delivery does not time out.

wizard_api.mqtt_publish(topic, json.dumps(resp_data), 0) #Call the mqtt_publishy

—method of the wizard_apt module to deliver the response data to the MUTT server.

e Subscribe example 4: Recall the data immediately.

In this example, when the specified command is delivered by the MQTT server, the system immediately
reads values of all variables and sends them to the MQTT server. The following is an example of publish

and code configuration:

1.1. Device Supervisor App User Manual 69

InGateway Documentation, Release 0.0.1

Edit Subscribe X

Mame: Recall data

*Topic: recallivi

* Qos(MQTT): 1
* Main Function: | recall_test Matches the name of the entry function in the script
* Script: from common.Logger import logger

import json

def recall_test(topic, payload, wizard_api): #Define the m
logger.info(topic) #Print the subscribe topic. Assume
payload = json.loads(payload) #Deserialize subscribe d
logger.info(payload) #Print the subscribe data. Assume
if payload[”command™] == "Upload immediately™: #Check

wizard api.recall data(recall) #Call the recall da

recall(data_collect, tail, wizard_api): #Define the ca

logger.info(data_collect) #Print the read data.

value list = [] #Define the data list.

for device, val dict in data_collect["values™].items()
value dict = { #Customize the data dictionary.

"DeviceSN": device

Cancel n

from common.Logger import logger

import json

def recall_test(topic, payload, wizard_api): #Define the main function for,
—subscribe.

logger.info(topic) #Print the subscribe topic. Assume that the topic is "recall/
vl

payload = json.loads(payload) #Deserialize subscribe data.

logger.info(payload) #Print the subscribe data. Assume that the payload data is
< {"command": "Upload immediately"}.

if payload["command"] == "Upload immediately": #Check whether to call back they,
—~data.

wizard_api.recall_data(recall) #Call the recall_data method of the wizard_

—api module to define the callback function name of the method as recall.

def recall(data_collect, tail, wizard_api): #Define the callback function recall.

logger.info(data_collect) #Print the read data.

(continues on next page)

70 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

value_list = [] #Define the data list.
for device, val_dict in data_collect["values"].items(): #Traverse the walues,
—~dictionary. The dictionary contains the device name and the variables of the,
—~device.
value_dict = { #Customize the data dictionary.
"DeviceSN": device,
"timestamp": data_collect["timestamp"],
"Data": []
}
for id, val in val_dict.items(): #Traverse wariables and assign values for,
—the Data list.
var_dict = {} #Define the wvariable dictionary.
var_dict[id] = val["raw_data"]
value_dict["Data"] .append(var_dict) #4dd wvariable dictionaries to wvalue_
—~dict in sequence.
value_list.append(value_dict) #A4dd data dictionaries to wvalue_list im,
—sequence.
logger.info(value_list) #Print wvalue_list.
wizard_api.mqtt_publish("v1l/xxx/yyy", json.dumps(value_list), 1) #Call the mqtt_
—publish method of the wizard_api module to send value_list to the MUTT server,

—based on the topic "vl/zzz/yyy" and (oS level 1.

Device Supervisor APl Description

The API provided by Device Supervisor supports the following methods:

e mgtt_publish: The MQTT message publish method. It is used to send the specified data to the
MQTT server based on the topic and return the sending result (True or False). For its usage example,

see Publish example 3. This method contains the following parameters:

— Parameter 1: The MQTT topic. The data type is string. This topic is used to send the data
to the MQTT server.

— Parameter 2: The data to be sent.
— Parameter 3: The QoS level. Valid values are 0, 1, and 2.

o save_data: The method for saving data to the database. The saved data will be uploaded by saving
order to the MQTT server when the MQTT connection is resumed to normal. For its usage example,

see Publish example 8 and Publish example 4. This method contains the following parameters:

— Parameter 1: The data to be saved. If only Parameter 1 is provided when save_data is called,

the data type of Parameter 1 is dict, the saved data must have key-value pairs with topic, qos,

1.1.

Device Supervisor App User Manual 71

InGateway Documentation, Release 0.0.1

and payload as the keys, and the saved data is sent to the MQTT server based on its topic, qos,

and payload after the MQTT connection is resumed to normal.

— Parameter 2 (group is optional): The group name of the data to be saved. The data type is
string. When save_data is called, if Parameter 2 is provided, Parameter 1 is sent to the

MQTT server based on the topic and QoS associated with this group in the cloud service.

e write_plc_values: Deliver the data to the specified variable method and return the modification
result. For its usage example, see Subscribe example 1, Subscribe example 2 and Subscribe example 3.

This method contains the following parameters:
— Parameter 1: Deliver the data. Two forms are supported:

% Form 1: Input a dict which uses the variable name and value as the key-value pair. When
using this method to modify the variable value, keep the variable name unique in the Device

list. The following is a data format example:

"SP1": 12.3, #The key-value pairT of the wvariable name and value.

"Sp2": 12.4

* Form 2: Input a dict that contains the device name and variable name and value. The

following is a data format example:

{
"S7-1200": #The mname of the device.
{
"SP1": 12.3, #The key-value patir of the variable name and value.
"Sp2": 12.4
X
b

— Parameter 2 (callback is optional): The name of the callback function that returns the mod-
ification result. For more information about the callback function, see Description of the

write_plc_wvalues callback function.

— Parameter 3 (tail is optional): When Parameter 2 is available, you can assign the data that

needs to be sent to the callback function returning the modification result to Parameter 3.

— Parameter 4 (timeout is optional): The write timeout time. The data type is Integer or float.
The default value is 60s.

e get_tag_config: The method to get the configurations, including the PLC, variable, group, and alarm
configurations. For its usage example, see Publish erample 5. This method contains the following

parameters:

72 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

— Parameter 1: The name of the callback function that gets the configuration. For more informa-

tion about the callback function, see Description of the get tag config callback function.

— Parameter 2 (tail is optional): It can be used to assign the data that needs to be sent to the

callback function getting the configuration to Parameter 2.

— Parameter 3 (timeout is optional): The timeout time for getting the configuration. The data

type is Integer. The default value is 60s.

e recall_data: The method that is used to read values of all variables immediately. For its usage

example, see Subscribe example 4. This method contains the following parameters:

— Parameter 1: The name of the callback function that immediately reads values of all variables.
For more information about the callback function, see Description of the recall data callback

Sfunction.

— Parameter 2 (tail is optional): It can be used to assign the data that needs to be sent to the

callback function immediately reading values of all variables to Parameter 2.

— Parameter 3 (timeout is optional): The timeout time for immediately reading values of all

variables. The data type is Integer. The default value is 60s.

e get_global_parameter: The method to get the custom parameter. For its usage example, see Publish

ezample 6. This method returns a dictionary for custom parameter. The data format is as follows:

'gateway_sn': 'GTO02XXXXXXXXXX', #The gateway serial number, which is a systemy
—parameter.

'log_level': 'INFO', #The log level, which is a system parameter.

'catch_recording': 100000, #The maxzimum number of MQATT messages of wvariables,
—that can be cached.

'warning_recording': 2000, #The mazimum number of MYITT messages of alarms that,
—can be cached.

'device_id': 'l1' #The custom parameter.

Device Supervisor APl Callback Function Description

e write_plc_values Callback function descriptionwrite_plc_valuesThe callback function contains the

following parameters. For its usage example, see Subscribe example 3:
— Parameter 1: The write result of the write_plc_values method.

* When write times out, the returned value is

("error", -110, "timeout")

Device Supervisor App User Manual 73

InGateway Documentation, Release 0.0.1

* When write succeeds, the format of the returned value is:

'value': 12, #The written wvalue.

'device': 'S7-1200', #The written device.

'var_name': 'Test2', #The written wvariable name.

'result': 'OK', #The written result. UK: writing succeeded; Fatiled:
—writing fatiled.

'error': '' #The writing error. When the writing result is OK, thisy

—parameter 1S empty.

H

* When write failed, the format of the returned value is:

[
{

'value': 12.3,

'device': 'Modbus_test',

'var_name': 'SP1',

'result': 'Failed’,

'error': "Device 'Modbus_test' not found."
1

— Parameter 2: The Parameter 3 configured in the write_plc_values method. If Parameter 3

is not configured in write_plc_values, this parameter is None.

— Parameter 3: It is the API provided by Device Supervisor. For more information about it, see

Device Supervisor API Description.

e get_tag_config Callback function descriptionget_tag_configThe callback function contains the fol-

lowing parameters. For its usage example, see Publish example 5:

— Parameter 1: The configuration returned by the get_tag_config method. When getting con-

figuration times out, the returned value is ("error", -110, "timeout"); otherwise, the data

format is as follows (Take Rack/slot mode of the ISO-on-TCP protocol as an example):

'devices': [#The device configuration.

{
'protocol': 'ISO-on-TCP', #The device protocol.
'device_name': 'S7-1200', #The mname of the device.
'ip': '10.5.16.73', #The IP address.
'port': 102, #Port

(continues on next page)

74

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

'rack': O, #The rack number.
'slot': O, #The slot number.
'id': '6358£50294dc11ea8d890018050£f£046' #The device ID.
H,
'groups': [#The group configuration.
{
'group_name': 'warning', #The group name.
'polling_interval': 10, #The collection interval.
'upload_interval': '', #The reporting interval.
'group_type': 'alarm', #The group type. collect: collect group; alarm:,
—alarm group.

'id': '84c371902eb911eabablladf32dleedd' #The group ID.

3,

'warning': [#The alarm configuration.

{
'warn_name': 'Warnl', #The alarm name.
'group': 'warning', #The group of the alarm.

'quotes': 1, #The wartable source of the alarm. 0: direct use address;
—1: reference address.

'device': 'S7-1200', #The device of the alarm variable.

'alarm_content': 'The speed has exceeded 30!' #The alarm description.

'conditionl': 'Gt', #The alarm condition 1. Eq: equal to; Neq: moty
—equal to; Gt: grater than; Gne: greater than or equal to; Lne: less than ory
—equal to; Lt: less than.

'operandl': '30', #The alarm threshold 1.

'combine_method': 'And', #The connection mode of alarm conditions.
—None: empty; And: &&; Or: [/

'condition2': 'Lt', #The alarm condition 2.
'operand2': '50', #The alarm threshold 2.
'var_name': 'Test2', #The wvariable name of the alarm.

'var_id': '96c93c3094dd11eabd400018050££046', #The wvariable ID of the,
—alarm.

'size': 1, #The length of the string when the data type of the alarm,
—variable ts STRING.

'float_repr': 2, #The number of digits following the decimal point of,
—the wvariable when the data type of the alarm vartable is FLOAT.

'id': '9165ed78943e11ea8a000018050££046', #The alarm ID.

'address': 'DB6.2', #The wariable address of the alarm.

'protocol': 'ISO-on-TCP', #The communication protocol of the alarm

—device.

(continues on next page)

1.1. Device Supervisor App User Manual 75

InGateway Documentation, Release 0.0.1

(continued from previous page)

'data_type': 'WORD', #The data type of the alarm wvariable.
'register_type': 'DB', #The register type of the alarm wvartiable.
'register_addr': 2, #The register address of the alarm vartiable.
'read_write': 'read/write', #The read/write permission of the alarm.

—read: read-only; write: write-only; read/write: read and write.
'mode': 'realtime', #The wvariable collection mode of the alarm.
'unit': '', #The wvariable unit of the alarm.

'desc': '', #The wvariable description of the alarm.

'dbnumber': 6, #The DB number of the wvariable when the register type of,

—~the alarm variable is DB.

'register_bit': '' #The offset of the wvariable when the data type of
—~the alarm vartable is BOOL or BIT.
3,
'vars': [#The variable configuration.
{
'device': 'S7-1200', #The name of the device to which the wvariable,
—belongs.

'protocol': 'ISO-on-TCP', #The communication protocol of the device to,
—which the wvartable belongs.

'data_type': 'BOOL', #The data type of the wvartable.

'register_type': 'I', #The register type of the wariable.

'var_name': 'Testl', #The wariable name.

'register_addr': O, #The register address of the wariable.

'read_write': 'read/write', #The read/write permission of the wvariable.

—read: read-only; write: write-only; read/write: read and write.

'mode': 'realtime', #The collection mode of the wariable.
'unit': '', #The unit of the wvariable.
'desc': '', #The description of the wvariable.

'group': 'default', #The group of the wvariable.

'register_bit': 0, #The offset of the wariable when the data type of,
—the wvariable ts BOOL or BIT.

'size': 1, #The length of the string when the data type of the wvariable,
—1s STRING.

'float_repr': 2, #The length of the data following the decimal point of,
—the vartable when the data type of the wariable is FLOAT.

'dbnumber': O, #The DB number of the wvariable when the register type of,
—the wvariable is DB.

'id': 'ald9439a94dc11eaa2830018050£f£046', #The ID of the wvariable.

'address': 'I0.0' #The address of the wariable.

1,

(continues on next page)

76

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

'device': 'S7-1200',
'protocol': 'ISO-on-TCP',
'data_type': 'WORD',
'register_type': 'DB',
'var_name': 'Test2',
'register_addr': 2,

'read _write': 'read/write',
'mode': 'realtime',

'unit': '',

'desc': '',

'group': '2222',
"dbnumber': 6,

'size': 1,

'float_repr': 2,
'register_bit': '',

'id': '96c93c3094dd11eabd400018050££046"',
'address': 'DB6.2'

3

— Parameter 2: The Parameter 3 configured in the get_tag_config method. If Parameter 3 is

not configured in get_tag_config, this parameter is None.

— Parameter 3: It is the API provided by Device Supervisor. For more information about it, see

Device Supervisor API Description.

e recall_data Callback function descriptionrecall_dataThe callback function contains the following

parameters. For its usage example, see Subscribe example 4:

— Parameter 1: The variable data returned by the recall_data method. When getting variable
data times out, the returned value is ("error", -110, "timeout"); otherwise, the data format

is as follows:

'timestamp': 1589507333.2521989, #The timestamp when data is generated.
'values': #The data dictionary, including the PLC mame, variable name, and
—wvariable value.
{
'S7-1200': #The PLC mame.
{

'Testl': #The wvartable name.

(continues on next page)

1.1. Device Supervisor App User Manual 77

InGateway Documentation, Release 0.0.1

(continued from previous page)

'raw_data': False, #The variable wvalue.
'status': 1 #The collection status. If the wvalue ts mot 1, the,

—collection s abnormal.

},

'Test2':

{
'raw_data': 33,
'status': 1

}

— Parameter 2: The Parameter 3 configured in the recall_data method. If Parameter 3 is not

configured in recall_data, this parameter is None.

— Parameter 3: It is the API provided by Device Supervisor. For more information about it, see

Device Supervisor API Description.

Parameter Settings
You can choose Edge Computing > Device Supervisor > Parameter Settings and configure global
settings for Device Supervisor.
e Default Parameter
You can set the log level, the number of historical alarm and historical data in the default parameter.
e Custom Parameter

You can add common parameter to the custom parameter as wildcards and use them in the cloud

service. The usage is ${Parameter Name}, as shown in the figure below:

78 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

]
o
=]
[
[y
o
m
.

=)
[11]
[

Global Parameters

Parameters

rvisor Global Paramesters

Parameters Value

Operation @

catch_recording 100000 Z
device id 1 2 0
log_level INFO &
warning_recording 2000 Z

e Serial port settingsIn the serial port setting module, you can configure communication parameters for

the serial ports RS485 and RS232, as shown in the figure below:

Serial Port Settings

RS-485 Serial Port
Baud Rate: 9600
Data Bits: 8

* Parity: MNone

Stop Bits: 1

Gateway other configuration

RS-232 Serial Port

Baud Rate: = 9600

Data Bits: 8

* Parity: None

* Stop Bits: 1

For more information about other common gateway operations, see Get Started with 1G501, Get Started

with IG502 or Get Started with I1G902.

ThingsBoard reference flowchart

o Add devices and assets
e Transmit the PLC data to ThingsBoard devices

e Configure a visual dashboard

1.1. Device Supervisor App User Manual

79

http://manual.ig.inhandnetworks.com/en/latest/IG501-Quick-Start-Manual.html
http://manual.ig.inhandnetworks.com/en/latest/IG502-Quick-Start-Manual.html
http://manual.ig.inhandnetworks.com/en/latest/IG502-Quick-Start-Manual.html
http://manual.ig.inhandnetworks.com/en/latest/IG902-Quick-Start-Manual.html

InGateway Documentation, Release 0.0.1

Add devices and assets

Visit https://demo.thingsboard.io/login and enter the login account and password. If you do not have

an account yet, register an account first before login. Registration requires access to the network outside

China.

%ThingsBoard

Log in to see ThingsBoard in action.

(ermail) *

@minhand.com.cn

FORGOT PASSWORD?

Do not have an account?

CREATE AN ACCOUNT

OR

(5 LOGIN WITH GOOGLE

e Add an asset

80 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Add Asset

Name*
Device Supervisor test

Assettype
InGateway

Description

CANCEL

% ThingsBoard B3 Assets

A HOME

ttype

Asse
Assets
¢-) RULECHAINS

22 CUSTOMERS O

Created time J Name Asset type Label Customer Public

B Assers
O 2020-06-02 20:49:05 InGateway a
o0 DEVICES
= ENTITY VIEWS
2¢ WIDGETS LIBRARY

BS DASHBOARDS

@ AupiT LOGS

¢ Add a device

Add Device

Name*

$7-1200

Device type *

default

Label

O Is gateway

Description

CANCEL

1.1. Device Supervisor App User Manual 81

InGateway Documentation, Release 0.0.1

%ThingsBoard [e0 Devices

A HOME

Device type

Devices -
€+) RULE CHAINS

N
G2 Elanl = O Createdtime & Name Device type Label Customer Public Is gateway

O 2020-06-02 205552 §7-1200 defautt O O .

B assers

[=0 DEVICES

= ENTITY VIEWS
B$ WIDGETS LIBRARY

B3 DASHBOARDS

@ AupiTLOGS

Associate the asset with the device.

Add relation

Relation type

Contains

. S71200 X En

Additional info (JSON) ToY MNU [3

1

After the device is added, the page is as follows:

@ThingsBoard B3 Assets

A HomE

pssets 5 DEVICE SUPERVISOR TEST

¢-> RULECHAINS Asset details

22 cusTomers O ceestime 4 sssetpe

DETAILS ATTRIBUTES LATEST TELEMETRY ALARMS EVENTS RELATIONS AUDITLOGS
B3 AsseTs PR

[0 20200602204905 Device Supervisor test InGateway
[DEVICES) Diecton
< Outbound relations from - + C Q
= ENTITY VIEWS
™ O et To entiy type To entity name
M -
2& DASHBOARDS 0O conteins Device 571200 V|

@ AuDITLOGS

Transmit the PLC data to ThingsBoard devices

After configuring the asset and device, copy the access token of the added device and paste it to the
username field on the cloud service page of the gateway, and then transmit the data to the S7-1200 device

in ThingsBoard.

82 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

2hang ning

P;Hj ThingsBoard [Devices o Tenant adminsi

4 HOME

¢ RULECHAINS

Device ype $7-1200

Devices 5

Device details

Createdtime 4 Name Device type

22 CUSTOMERS O

DI

2 ATTRIBUTES LATEST TELEMETRY ALARMS EVENTS RELATIONS AUDIT LOGS

B AsseTs

= B O R araE 1 default MAKE DEVIGE PUBLIC ASSIGN TO CUSTOMER MANAGE CREDENTIALS w
ol

B ENTITY VIEWS [coPY DEVICE ID OPY ACCESS TOKEN

B WIDGETS LIBRARY

5 DASHBOARDS

@ AupiT LOGS

Then, you can view the uploaded data in the latest telemeter of the device.

. . e h .
% ThingsBoard [ad Devices ta 9 e e £

A HOME

¢ RULECHAINS

i Device type §7-1200
Devices

Device details

DETALLS ATTRIBUTES LaTesTTELEMETRY | 2 ALARMS EVENTS RELATIONS AUDIT LOGS

22 CUSTOMERS o

Createdtime ¢ Name Device type

Ea AsseTs

[2020060309:57:51

- 1 defautt
il DEVICES

Latest telemetry Q

IS ENTITY VIEWS
H® WIDGETSLIBRARY O testupdatetime Key Value
-
m JDASHEIARDS O 2020060309:5820 testl false
@ AupiTLOGS

O 2020060309:5820 test 25

O 2020060309:5820 timestamp 1.591149500512418369

Configure a visual dashboard

o Add a dashboard
o Add a trend chart
o Add a switch

o Add a dashboard

Click Add Dashboard and select Create new dashboard. On the Add Dashboard page, configure
and add a dashboard.

1.1. Device Supervisor App User Manual 83

InGateway Documentation, Release 0.0.1

Add Dashboard

Title *
Demo dashboard

Description

CANCEL

Then, click the dashboard name, and select OPEN DASHBOARD.

% ThingsBoard 23 Dashboards

A HOME
Dashboards DEMO DASHBOARD

¢-> RULECHAINS Dashboard details

22 CUSTOMERS O createdtime 4 Title

DETALLS AUDIT LOGS
B3 Assets

(50 DEVICES O 2000003100204 Demo deshbozrd OPEN DASHBOARD EXPORT DASHBOARD MAKE DASHBOARD PUBLIC MANAGE ASSIGNED CUSTOMERS DELETE DASHBOARD
ol

= ENTITY VIEWS Title
Dem

B¢ WIDGETS LIBRARY

B3 DASHBOARDS

Description
@ AupiTLOGS ’
Click Enter edit mode.
%ThingsBoard 2§ Dashboards > E§ Demo dashboard = e

A HOME Demo dashboard

¢-> RULECHAINS

Demodashboard> [l (D Realtime-lastminute ¥

22 CUSTOMERS

B AsseTs

(o0 DEVICES

IS ENTITY VIEWS
2$ WIDGETS LIBRARY
B DASHBOARDS

@ AworrLocs

NO WIDGETS CONFIGURED

Powered by Thing

Click Entity aliases to add an entity alias for the dashboard.

84

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Entity aliases

Resolve as

Entity filter multiple entities

SAVE CANCEL

On the Entity Alias page, configure it according to the following figure:

Add alias

Allas name * Resolve as multiple entities

$7-1200 data demonstration 9

| Device search query

Root entity
BB Use dashboard state entity as root

Asset ~ Device Supervisor test

I Fetch last level relation only
Direction * Max relation level

From v 1

Relation type

Contains

Device types *

default x 4fDevice type

CANCEL

Save it after configuration.

1.1. Device Supervisor App User Manual 85

InGateway Documentation, Release 0.0.1

Entity aliases

Resolve as

tity filter
Entity filte multiple entities

§7-1200 data demon; Devices with types ‘default that have
‘Contains’ relation from Asset

ADD ALIAS CANCEL

e Add a trend chart

On the dashboard page, click Enter edit mode and then click Add new widget.

%ThingsBoard 25 Dashboards > H§ Demo dashboard

& HOME Demo dashboard Demodashboardv [l (D Realtime-lastminute ¥

¢-» RULE CHAINS
22 CUSTOMERS

B AsseTs

(o0 DEVICES

IS ENTITY VIEWS
E$ WIDGETS LIBRARY
B DASHBOARDS

@ AworTLocs

NO WIDGETS CONFIGURED

86 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Title

Demo dashboard

Powered by Thingsboard v.3.0.0

Select Charts from components and click Timeseries-Flot.

zhang ning .
Tenant administrator *

7%, ThingsBoard %5 Dashboards > %3 Demo dashboard

A HOME © Realtime - last minute ¥

¢-3 RULECHAINS

Demo dashboard SELECT WIDGET

&a CUSTOMERS
e Current bundle Charts

[o DEVICES

TIME SERIES LATEST VALUES

IS ENTITY VIEWS

2§ WIDGETS LIBRARY
B DASHBOARDS

@ AupiTLOGS

AT TITOTOTHTTTTH T

avg
— st 15002
second 31408

Timeseries - Flot

100
200
300
400

-500
100940 100945 100950 100955 101000 101005 10100 107015 10:1020 101025 101030 101035

avg
— st 18139
Second 14978

On the DATA page of the chart, add data to the trend chart.

1.1. Device Supervisor App User Manual 87

InGateway Documentation, Release 0.0.1

Add Widget

SETTINGS

Use dashboard timewindow

M Display timewindow

Datasources

ADVANCED ACTIONS

Add Widget

SETTINGS

Use dashboard timewindow

M Display timewindow
Datasources

Type Parameters

Entity 'l $7-1200 data demonstra |>< @ ~ testi2tes2 £ X

CANCEL

ADVANCED ACTIONS

@ ~ testl:test1 / X

+ Aop

After the data is added, the page is as follows:

CANCEL

88

Chapter 1.

InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

7% ThingsBoard %3 Dashboards > 3§ Demo dashboard o @

Tenant administrator *

A HOME e = ® I (ORealtime-lastminte ¥ 3
<> RULECHAINS WD

Demo dashboard

New Timeseries - Flot ;% x

(o0 DEVICES
I= ENTITY VIEWS

B¢ WIDGETS LIBRARY

B DASHBOARDS

@ AupiTLOGS

01220 101230 01240 101250 01300 101310
testl NaN
— test2 25

Powered by Thingsboard v.3.0.0

¢ Add a switch

Click Add new widget, select Create new widget, and add a control switch.

Tenant administrator

7% ThingsBoard %5 Dashboards > 25 Demo dashboard o @

A HOME ¢ = & GO Realime-lastminute & I3
¢ RULECHAINS

Ijemo dashboard

New Timeseries - Flot /¥ x

[o0 DEVICES
IS ENTITY VIEWS

& WIDGETS LIBRARY

B DASHBOARDS

@ AworTLocs

4
101340 101350 101400 101470 101420 101430

avg
— testi NaN
— test2 25

+
Create new widget

000

Powered by Thingsboard v.3.0.0

Select Control widgets from components, and click Round switch.

1.1. Device Supervisor App User Manual 89

InGateway Documentation, Release 0.0.1

cao shun

Tenant administrat

@ThingsBoard 2§ Dashboards > H§ Demo dashboard o

A HOME R o O Realtime-lastminute ¥

¢-> RULECHAINS Titiez

Demo dashboard SELECT WIDGET

[AsseTs New Timeseries - Flot Current bundle Control widgets

22 CUSTOMERS

Lo DEVICES

CONTROL WIDGET
B ENTITY VIEWS o S
15 SEND RPC
B WIDGETS LIBRARY
10
B3 DASHBOARDS
:]
@ AT LoGS TrpRdSHREAR
0
115720 TIo125 0130 OEET 0140 T
- testt
— test2
TaRgSRErs A"

&

Target device is not set!

Switch contro

Target deyice is not set!
UL

Select the target device.

Add Widget

SETTINGS ADVANCED ACTIONS

Target device

| $7-1200 data demostration !

CANCEL

After configuration, adjust the component size and layout, and save the configuration.

90 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

@ThingsBoard

E§ Dashboards > H§ Demo dashboard

A HOME < -
<) RULE CHAINS e
Demo dashboard

22 CUSTOMERS

B3 AsseTs New Timeseries - Flot

- caoshun
& Tenant administrator *

@ GO ©Reattime-lastminute ¥ II

[e0 DEVICES

IS ENTITY VIEWS
B WIDGETS LIBRARY
B3 DASHBOARDS

@ AupiTLOGS

105930 105955 10000

- test1
— test2

0010

10015

110025 110030 110035 11:00:40 1.0045

avg
NaN
25

D fflin
Rotind swirch x

Powe-re T TRmgSBoard v.3.0.0

Then, you can use the switch to deliver control commands and view data trends through the trend

charts.

%ThingsBoard

2§ Dashboards > E§ Demo dashboard

A HOME Demo dashboard

¢-> RULECHAINS

New Timeseries - Flot
22 CUSTOMERS

e cao shun
= Tenant administrats

Demo dashboard [qfi Entities (O Realtime-lastminute % I3

B AsseTs

(o0 DEVICES

IR ENTITY VIEWS

B& WIDGETS LIBRARY

2020-06-03 11:02:49

B3 DASHBOARDS 2

@ AupiTLOGS — e

— test2

110240 110245 110250

10300

110310

110315 10320 110325 110330 110335
avg
NaN

Round switch

1.1.6 FAQ

e Check whether the cloud service script is correct

o Check whether the App’ s cloud service output is correct

Powered by Thingsboard v.3.0.0

1.1.

Device Supervisor App User Manual

91

InGateway Documentation, Release 0.0.1

Check whether the cloud service script is correct

Open the log of Device Supervisor App Write the script and click OK. The Build module: <Main Function

Name>, type: <publish/subscribe> information in the log shows whether the script is built successfully.

If the script is built successfully, the page is as follows:
[2020-05-18 17:18:27, 460] [INFO] MqttProxy.py 175]: Build module: main, type: publish
[2020-05-18 17:18:27, 468] [INFO] MqttProxy.py 191]: Build OF.

If the script failed to build, the page is as follows:
[2020-0B-18 17: 22: 04, 612] [FRFOR] [MgttProwy.py 1061 Build moduls error. *Ho main emtry method found. maini®

Check whether the App’ s cloud service output is correct

You can use logger and logging to output important logs. In the following figure, the logging.info
method is added in the sixth line of the script. You can search for <string> 6 in the log to check whether
the output results meet the expectation.

[2020-05-18 17:21:53, 3511 [INFO] [<string> 6]° [tinestany’: 1589703710.2932811, "values : [Mocbustest': ['Testl': ['raw_data : False, 'status’: 1], “TestZ | [rawdata: 31 "status’: 1h Test¥: [rawdata’: 0, 'status’: 11}, *ST-1200
FSPI’. Urardata . Falee, 'statue’: 111}, group nane’: " default’}

1.2 AWS loT User Manual

The AWS IoT allows for secure bidirectional communication between the AWS cloud and devices (such as
sensors, actuators, embedded microcontrollers, and smart devices) connected to the Internet, so that you

can collect, store, and analyze telemetering data from devices.

The edge computing gateway InGateway902 (IG902 for short) provides the Device Supervisor app (Device
Supervisor for short) to help users connect their devices to the AWS IoT. This document uses IG902 as an
example to describe how to submit service data and deliver configuration data between the Device Supervisor
and the AWS IToT. For details about the AWS usage restrictions, see AWS Service Quota.

e Prerequisites
e 1. Environment Preparation
— 1.1 Configuring the AWS IoT
x 1.1.1 Creating Things
x 1.1.2 Creating the Policy
x 1.1.8 Configuring the Certificate
— 1.2 Configuring the Edge Computing Gateway
x 1.2.1 Basic Configuring

x 1.2.2 Data Collecting Configuration

92 Chapter 1. InGateway Documentation Site Navigation

https://docs.aws.amazon.com/zh_cn/general/latest/gr/aws_service_limits.html#limits_iot

InGateway Documentation, Release 0.0.1

e 2. Message Publishing and Subscription
— 2.1 Connecting to the AWS IoT
— 2.2 Publishing Messages to the AWS IoT
— 2.8 Subscribing to AWS IoT Messages

e Appendix

— Device Supervisor AWS IoT API Description

1.2.1 Prerequisites

e AWS cloud platform account
o Edge computing gateway 1G501/1G902
— Firmware version
x 1G902: IG9-V2.0.0.r12754 or later
x IGH01: IG5-V2.0.0.r12884 or later
— SDK version
* 1G902: py3sdk-V1.4.0_Edge-IG9 or later
* IG501: py3sdk-V1.4.0_Edge-IG5 or later

— App version: device_supervisor-V1.2.5 or later

1.2.2 1. Environment Preparation

e 1.1 Configuring the AWS IoT

e 1.2 Configuring the Edge Computing Gateway

1.1 Configuring the AWS loT

e 1.1.1 Creating Objects
e 1.1.2 Creating the Policy
e 1.1.8 Configuring the Certificate

If you have configured the things, policy, and certificate in the AWS IoT console, go to 1.2 Configuring the
Edge Computing Gateway. Otherwise, perform the following steps to configure the AWS IoT console. Visit

https://aws.amazon.com/, log in to the IoT console, and choose IoT Core.

1.2. AWS loT User Manual 93

InGateway Documentation, Release 0.0.1

aws

S—1

Products Solutions

’—? Networking & Content Delivery

Contact Sales Supportw Englishw My Account~

Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More

See the AWS Initiatives and Response to COVID-19 »

Amazon Elasticsearch Service

Fully managed Elasticsearch for log analytics, without the

operational overhead

Amazon Lightsail
Everything you need to get started on

VPC

CloudFront

Route 53

AP| Gateway

Direct Connect

AWS App Mesh

AWS Cloud Map
Global Accelerator [A

Developer Tools
CodeStar
CodeCommit
CodeArtifact
CodeBuild
CodeDeploy
CodePipeline
Cloud9

X-Ray

Customer Enablement

Your Data Has Hidden Value
Learn how to get the most from your data

Amazon Forecast

Amazon Fraud Detector

Amazon Kendra
Amazon Lex
Amazon Personalize
Amazon Polly
Amazon Rekognition
Amazon Textract
Amazon Transcribe
Amazon Translate
AWS DeepComposer
AWS Deeplens

AWS DeepRacer

&

Analytics

Athena

EMR

CloudSearch
Elasticsearch Service
Kinesis

QuickSight Z

__/O
o)
~or

TR p

25

Get Hands-On with SageMaker
Learn how to build, train, and deploy a

[o}

B

Amazon Aurora
Performance and availability of

I'LFJ Customer Engagement
Amazon Connect
Pinpoint
Simple Email Service

@] Business Applications

Alexa for Business
Amazon Chime E
WorkMail

Amazon Honeycode

[Z8 End User Computing
WorkSpaces
AppStream 2.0
WorkDocs
WorkLink

@ Internet of Things

Sign In to the Console

«

Aws1a Z E‘?‘E I?;czh;:chan FTEERTO_S
Support ge loT 1-Click
Managed Services AWS Glue) loT Analytics
AWS Lake Formation loT Device Defender
MSK loT Device Management
&5 Robotics loT Events
AWS RoboMaker loT Greengrass
loT SiteWise
loT Things Graph
== Blockchain
Amazon Managed Blockchain
@y Game Development
94 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

The following page appears after you log in to IoT Core:

Services v Resource Groups + * iot@i .com.cn @ 3311-06.. v Oregon v Support v

AWS loT X

Monitor
Activity

» Onboard
AWS loT
» Manage
b Greengrass AWS loT is a managed cloud platform that lets connected devices - cars,
light bulbs, sensor grids, and more - easily and securely interact with
P Secure cloud applications and other devices.
» Defend
> Act o—’

Test \l n‘\’:’ i

N ((
j

)

Software

Settings
Connect and manage your Process and act upon Read and set device state
L . . .
o devices device data at any time
Documentation [4

Connect devices to the cloud using the Filter, transform, and act upon data from AWS loT stores the |atest state of a device so

@ Feedback (@ English (US) c Privacy Policy ~ Terms of Use

1.1.1 Creating Things

Choose Manage > Things and click Create.

Services v Resource Groups v * J .com. -06.. v Oregon v Support v

AWS loT X AWS 16T

Things
Monitor Things
Activity
Search things Info
B Onboard
¥ Manage Name Type
(X]
Types
NO TYPE
Thing groups s
L
Billing groups NO TYPE
(X]
Jobs M
NO TYPE
Tunnels LX
NO TYPE
P Greengrass o
NO TYPE
P Secure LX]
NO TYPE
» Defend LX]
NO TYPE
P Act X}
NO TYPE
Test (X]

@ Feedback (@ English (US)

Click Create a single thing.

1.2. AWS loT User Manual 95

InGateway Documentation, Release 0.0.1

Creating AWS loT things

An l1oT thing is a representation and record of your physical device in the cloud. Any physical
device needs a thing record in order to work with AWS loT. Learn more.

Register a single AWS loT thing
Create a thing in your registry Create a single thing

Bulk register many AWS loT things

Create things in your registry for a large number of devices already using AWS loT, or

Create many things
register devices so they are ready to connect to AWS loT.

Cancel Create a single thing

Set the thing name, for example, aws_iot_test, retain the default values for other parameters, and then
click Next.

96

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

CREATE A THING

Add your device to the thing registry

This step creates an entry in the thing registry and a thing shadow for your device.

Name

aws_iot_test

Apply a type to this thing

Using a thing type simplifies device management by providing consistent registry data for things that share a
type. Types provide things with a common set of attributes, which describe the identity and capabilities of your
device, and a description.

Thing Type

Mo type selected - Create a type

Add this thing to a group

Adding your thing to a group allows you to manage devices remotely using jobs.

Thing Group

Groups J Create group Change

Set searchable thing attributes (optional)

Enter & value for one or more of these attributes so that you can search for your things in the registry.

Attribute key Value
Clear

Provide an attribute key, e.g. Manufactur Provide an attribute value, e.g. Acme-Coi

Show thing shadow -

Click Create certificate.

1.2. AWS loT User Manual 97

InGateway Documentation, Release 0.0.1

CREATE A THING

Add a certificate for your thing

A certificate is used to authenticate your device's connection to AWS loT.

One-click certificate creation (recommended)

Create certificate

This will generate a certificate, public key, and private key using AWS loT's certificate |
authority.

Create with CSR
X Create with CSR
Upload your own certificate signing request (CSR) based on a private key you own.

Use my certificate
Get started
Register your CA certificate and use your own certificates for one or many devices.

Skip certificate and create thing

You will need to add a certificate to your thing later before your device can connect to AWS Create thing without certificate
loT.

After the certificate is created, you need to download the certificate for this thing, the private key, and
the root CA of the AWS IoT, activate the certificate, and then click Done. It is recommended that you
download Amazon Root CA 1 or Starfield Starfield root CA certificate when downloading the root

CA certificate. Currently, the Amazon Root CA 3 certificate is not supported.

98 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Certificate created!

Download these files and save them in a safe place. Certificates can be retrieved at any time, but the private and public keys cannot be retrieved
after you close this page.

In order to connect a device, you need to download the following:

ﬁ-»_lc:;uﬁcate for this 8220af6572.cert.pem
A public key 82a0afe572 public.key Download

A private key 82a0af6572.private.key

nload a rogt CA for AWS loT:

You alse need to do
A root CA for AWS lo

Cancel Attach a policy

Developer Guide

AWS loT X CA certificates for server authentication

r Guide

Depending on which type of data endpoint you are using and which cipher suite you have negotiated, AWS

P What is AWS 1aT? 10T Core server authentication certificates are signed by one of the following root CA certificates:
P Getting started with AWS loT VeriSign Endpoints (legacy)
Caore

» RSA 2048 bit ke)l: VeriSign Class 3 Public Primary G5 root CA certificate EI

P AWS loT Tutorials

Amazon Trust Services Endpoints (preferred)
P Managing devices with AWS

loT

@ Note

P Tagging your AWS loT
You might need to right click these links and select Save link as... to save these certificates as files.

resources

¥ Security
! + RSA 2048 bit keyjAmazon Root CA 1

Security in AWS loT + RSA 4096 bit key: Amazon Root CA 2. Reserved for future use.

¥ Authentication « ECC 256 bit key: Amazon Root CA 3[4,
Server authentication » ECC 384 bit key: Amazon Root CA 4. Reserved for future use.
P Client authentication These certificates are all cross-signed by th* Starfield Root CA Certificate E.lt\ll new AWS loT Core regions,

beginning with the May 9, 2018 launch of AWS loT Core in the Asia Pacific (Mumbai) Region, serve only ATS
certificates.

P Custom authentication

After the thing is created, the following page is displayed:

1.2. AWS loT User Manual 99

InGateway Documentation, Release 0.0.1

aws, Services v Resource Groups ~ * Jay iot@inhand.com.cn @ 3311-06.. v Oregon v Sul

~—

AWS loT X NOTYPE

L)]

L
NO TYPE

Monitor LX
Activity NoTveE

LX)]

®
» Onboard NOTVRE

L)]

L
¥ Manage NO TYPE

L X]

. L
Things NO TYPE

Types LY
i NO TYPE

ing groups Y)

L
Billing groups NO TYPE

L X]

Jobs ®
NO TYPE

Tunnels LX]
NO TYPE

P Greengrass LY]
NO TYPE

P Secure ...
NO TYPE

» Defend ...
NO TYPE

P Act .-.

1.1.2 Creating the Policy

Choose Secure > Policies and click Create.

[} iot@inhand.com.cn @ 3311 ~ Oregon v

AWS loT X AWS IoT Policies
Monitor PDliCiES
Activity

Search policies

» Onboard
Name
W Manage
Things se
Types
(¥
Thing groups b4
o0
Billing groups °
Jobs ee
L]
Tunnels 'Yy
L]
B Greengrass Yy
°
W Secure L
°
Certificates oo
°
Policies

On the Create a policy page, enter the policy name, configure the policy by referring to the following
settings, and then click Create. This policy allows all clients to connect to the AWS IoT.

o Enter iot:* in the Action text box.
e Enter * in the Resource ARN text box.

¢ Select Allow for Effect.

100 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Create a policy

Create a policy to define a set of authorized actions. You can authorize actions on one or more resources (things, topics, topic filters). To learn
maore about loT policies go to the AWS loT Policies documentation page.

Name

aws_iof_test

Add statements

Palicy statements define the types of actions that can be performed by a resource. Advanced mode

Action

Resource ARN

Effect

@Allow Deny

After the policy is created, the following page is displayed:

1.2. AWS loT User Manual 101

InGateway Documentation, Release 0.0.1

E_‘_"i"'_ﬁ Services v Resource Groups v %

AWS loT X

Maonitor

Activity
P Onboard
P Manage
P Greengrass

¥ Secure
Certificates
Policies
CAs
Role Aliases

Authaorizers

P Defend

awi_iot_test

1.1.3 Configuring the Certificate

Choose Secure > Certificates. The following page is displayed:

102 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Resource Groups *

ce08826dfa01020756a77e62ff5c90b69d4e9bf524aec312b332f1a162eae69b Active

AWS loT X
14c90745c8be02a84f99fada344be270ad934600bed0a96f38571113a7fced 26 Inactive
Monitor 1dc5c64b0eed901d51d720e976fd610a097b92454b25 78d6987a7dd3 Active
Activity b4772¢78bco64d 1cf313c22494f2839¢1 7h0f3b72b65a8bE55834cded4b 1c Inactive
» Onboard d27bd9e2af39ede5096af 20a8820e904c4724f3¢35d299dad 12646005 1ab2b7 Inactive
P Manage db7849955a8cfe23cebc606744e3b5a47352¢5bdfaa261fcac3989bf49110¢3F Inactive
B Greengrass e460292eb89fc8f5303075ab01ee82add4ff01 c7c53ddf: fbd17e2711775 Active
895fb598270e62b29f981e59¢cefc91 eEfced0c42056d5bee2778ceabe3e Active
W Secure
Certificates 55f3f2eadb1f77e1df0b7166ca86290638hdbI65903 1963859f012a06589d10bc Active
Policies 0b7ddde?462e5ef278899b05781c495524cef764379fd38b2f 1bcdd5b099be Active
Chs
dd1f0c16e0c22193f1b2312bef35adee3c9735749a2925e8b086c24f0004 269 Active
Role Aliases
904d117b39a0d452be3756a205 0b8490bcb418c557b8750e84d45d9a 10836 Active
Authorizers
a76e0263bff13bd94694b45bd93b3eab5a35495d6ae38d5da9353d231283cdch Active
P Defend
d6a238che61bc5a48868daa%ca96fcd058279a093e7 79daBeddsc4e88f25d2bT Inactive
P Act
I 82a0af65721f546ch08555ccbee11192cf59ee4d91603592e739638c61 Tecbcs Inactive

o Attaching a policy

Click -+ to the right of the certificate and choose Attach policy to attach a policy to the certificate.

Resource Groups v Oregon

24f33f50299dad 12646003 12b2b7 Inactive
AWS loT X ‘s
6744e3b5247352c5bdfa426 1fcac3983bf491 103 Inactive
e
°
Monitor £460292eb891BF5a03075ab01ee822dd94f01 7c53ddfES15fbd1 722711775 Active
ee
Activity ®
Activity fb598: 91e6fced0cd2056d5bee2778ceab Active
e
L]
» Onboard 55f3f2eadb 1772 1df0b7 166ca86290638bdb965905 1963859f02366589d 10be Active
ee
L]
» Manage Ob1ddde2462e56£278899b0578 16493524 c0ef764379fd38b2f1beSdsfb09obe Active
L X
°
B Greengrass dd1f0c16e0c22195f15251 2bef55adee3(9735749a2925080086c24f00042bf9 Active
L X]
,, _ °
904d117b3: 8490hch418(557h8750e84d4509a108a6 Active
w Secure
L X]
. - - - - N L4
Certificates a76e0263bff13b 3b3eab 231283cdch Active
e
o °
Policies bc5a48868da Inactive
chs ':
82a0af65721f546cb08555 192cf59ee4d916035926739638¢6 1eches Inactive
Role Aliases Activate
Deactivate
Authorizers
Revoke
Accept transfer
> Defend Reject transfer
Revoke transfer
> Act Start transfer
Test Attach thing
Download
Delete

Select the policy that you have created, and click Attach.

1.2. AWS loT User Manual 103

InGateway Documentation, Release 0.0.1

Attach policies to certificate(s)

Policies will be attached to the following certificate(s):

82a0af65721f546cb08555cc6ee11192cf59ee4d91603592e739638c611ecbe5

Choose one or more policies

Search policies

HIOW LTINS MO _W O U _C Ui e POty
nowlan_greengrass_Core-policy
jesse_policy_test
hugo_ubuntu_Core-policy
hugo_ig902_Core-policy
hugo_ig902_157_Core-policy
dd_Core-policy

@awl_ iot_test

1G902

1 policy selected

After the policy is attached, the following page is displayed:

Resource Groups

AWS loT

Monitor

Activity

» Oonboard

P Manage

v

Greengrass

4

Secure

Certificates

Policies

Chs

Role Aliases

Authorizers

v

Defend

Test

© success

Successfully attached policy.

AWS IoT Certificates

Certificates m

Search certificates

Name Status
20450343512 d. 12b86810f7e6acel Active
oe
£2348091588d5055977579296455¢0929955fb797522b45e900 13174834193 Active
o
L]
d813498842beef72ca85cb622688 2d5e0aefcc2bef60c73292b1 eObTafbaeast Inactive
o
L]
0668ff498280cE0bc2f688h19e45] 1d8647299111822 Active
oe
L]
ddfe8d05278e671067a532693¢6f8d6Ch3CC55eF 166 1fa2ec36019fbbdsafcce Active
oe
.
4450260553800d67652dc7ede6791fb990d 1 chdgs36azabcabecf112472923F Inactive
e
.
f; 55118a4df3df3622520808ef97f7b087aefee3f529cc Active
e
.
51b69419e07e7ffded2342421761d92f 39669577 3ad4f8aacaaa3azbadcachzd Inactive
LY]
.
3ef6f1721714b53223f9dad 3213011e321789821f35¢76812d5d1626dbb2075¢ Active

@ English (US)

o Attaching a thing

Click -

- to the right of the certificate and choose Attach thing to attach a thing to the certificate.

104

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Services v ResourceGroups ~ %

B d27bdge2af39edes096af 263882629044 7a4f 3¢ 5F50299dad 12646005 1ab2b7 Inactive
AWS loT X
db7843955a8cfe?3ce6c606744e3b5a47352c5hdfad26 1fcac3989bf49110c3f Inactive
Monitor 450292¢b89fc8f5a03075ab0 1 eeB2add04ff01 (7c53ddfe5 15fbd 1762711775 Active
oo
Activity . L]
895fb598270e62h29f98 1e5cef9 1 e6fced0r42056d5bee2778ceabc3e 79595 Active
P Onboard 55f3f2eadb1f77e1df0b7166ca86290638bdh965903 1963859f02ae6589d10bc Active
L X]
[
P Manage 0b1ddde2462e56f278899b05781c493524cdef764379fd38b21bcOd5fb090be Active
B Greengrass dd1f0c16e0c22195F1b23 12bef35adee3c9735749a2925e8b086c24f00042bF9 Active
o0
*
904d117b3920d452be37563205 b418¢557b8750 10826 Active
¥ Secure
Certificates 276e0263bfF1 5 d231283cdch Active
o0
ic °
Policies dea238ches b 9a093e779da8e4dscdensf25d2b9 Inactive
cas
8220af65721f546ch08555¢cbee11192¢f59ee4d916035926739638¢611ec6e5 Inactive
Role Aliases | Activate
" Deactivate
Authorizers
Revoke
Accept transfer
B Defend Reject transfer
Revoke transfer
P Act Start transfer
Test
Download
Delete

Select the thing that you have created, and click Attach.

Attach things to certificate(s)

Things will be attached to the following certificate(s):

82a0af65721f546ch08555cc6ee11192cf59ee4d91603592e739638c611ecbc5

Choose one or more things

Search things

dd_Core
nowlan_ig900_Core
nowlan_hello_world_Core

nowlan_greengrass_Core

jesse_test_thing

demotest

test

@ aws_iot_test

1 thing selected

After the thing is attached, the following page is displayed:

1.2. AWS loT User Manual 105

InGateway Documentation, Release 0.0.1

AWS loT X

Monitar

Activity

» Onboard

v

Manage

v

Greengrass

¥ Secure

Certificates

Policies

Chs

Role Aliases

Authorizers

v

Defend

Test

Resource Groups v %

(©]

Success
Successfully attached certificate to thing.

AWS loT

Certificates

Certificates

Search certificates

Name

6ee9e£9800ca04503435122433543bd00fI0d 253d093 e3¢ 13686810 7eace |

234809f5880505597757929645f5c09: fb797522b45290b1317f4834195
d81349884 2beef7 2ca85ch6226882d 5e9aefcc2bef60c73292b1e9b7afbaeasf

0668ff49828bc80bc2f688b19e45be606087d833063d92¢82108647299111822

ddfe8d05278e671067a532693¢6f8d6cb3cco5eF 1661 fa2ec36019fbbasAfcce

4450260553800d6765edc7ede6791fbo90d 1chd9836a2abe6ect 1e12472923F
£720dd0d49fed3c9628551c1824df3df362252d808ef97f7b08T7 defee3529cc

51b69419e07e7f4e423424e1761d9af 396695773244 f8aacaza3a2badcdbh2d

The preparation of the AWS IoT environment is completed.

1.2 Configuring the Edge Computing Gateway

e 1.2.1 Basic Configuring

e 1.2.2 Data Collecting Configuration

1.2.1 Basic Configuring

[\ iot@inhand.com.cr Oregon ~ Support

Status
Active
L X}
Active
o8
N L]
Inactive
L X
_ L]
Active
L X
. L]
Active
L X
[)
Inactive
(X]
. L]
Active
L X
L]
Inactive

e For details about IG902 connection configuration and software version update, see IG902 Quick Guide.

e For details about IG501 connection configuration and software version update, see IG501 Quick Guide.

1.2.2 Data Collecting Configuration

For details about the basic data collection configuration for the Device Supervisor, see Device Supervisor

App User Manual. The following figure shows the data collection configuration in this document:

Device Supervisor / Device List
Device List
Temperature_Sensor o
ModbusTCP
IP: 10.5.16.82 Z

Variables Table(Temperature_Sensor)

Name Group

® Test default

Data Type Address

WORD 40001

Value

Operation: (9 1, 4,

Total 1item

Operation: 1, 1,

®

Description Time Operation
2020-08-13 15:47:10 20
Total 1 item ‘ 1 ‘ 50/ page

106

Chapter 1.

InGateway Documentation Site Navigation

http://manual.ig.inhandnetworks.com/en/latest/IG902-Quick-Start-Manual.html
http://manual.ig.inhandnetworks.com/en/latest/IG501-Quick-Start-Manual.html
http://app.ig.inhandnetworks.com/en/latest/Device-Supervisor-User-Manual-EN.html
http://app.ig.inhandnetworks.com/en/latest/Device-Supervisor-User-Manual-EN.html

InGateway Documentation, Release 0.0.1

1.2.3 2. Message Publishing and Subscription

e 2.1 Connecting to the AWS IoT
e 2.2 Publishing Messages to the AWS IoT
e 2.3 Subscribing to AWS IoT Messages

The topics that start with a dollar sign ($) are reserved for the AWS IoT. You can subscribe to and publish
messages to these topics. However, you cannot create topics with a “$” prefix. Prohibited message publishing
or subscription for the reserved topics may cause connection failures. For details about the topics reserved
for the AWS IoT, see Reserved Topics.

2.1 Connecting to the AWS loT

Choose Edge Computing > Device Supervisor > Cloud on 1G902, select Enable Cloud Service,
and select AWS IoT from the Type drop-down list. The following is a configuration example:

1.2. AWS loT User Manual 107

https://docs.aws.amazon.com/zh_cn/iot/latest/developerguide/reserved-topics.html

InGateway Documentation, Release 0.0.1

" Edge Computing / Device Supervisor / Cloud

=]
w
m

Status

Cloud Status: Connection Successful

Connection time: 0 Day 00:00:48

Enable Cloud Service: C @
* Type: AWS 10T
Endpoint: -atsiot.us-wes
* Client |D: awstest
Certificate For Thing: 8230af6572-certificate.pem.cri
* Private Key: 82a0af6572-private.pem.key

rootCA: AmazonRootCAT.pem

Advanced Settings >

The parameters are described as follows:
o Type: select AWS IoT for an AWS IoT connection.

e Endpoint: endpoint address of the AWS IoT, which can be obtained from the Settings page of the
AWS ToT. If the VeriSign Class 3 Public Primary G5 root CA certificate is used, you need to delete

“

-ats” from the address.

108 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

a;_"y_;r', Services v ResourceGroups v %
AWS loT X AWS laT Settings
Monitor Settings
Activity

. ENABLED
Custom endpoint -

P Onboard
This is your custom endpoint that allows you to connect to AWS laT. Each of your Things has a REST APl available at this endpoint.
This is also an important property to insert when using an MQTT client or the AWS loT Device SDK.

P Manage Your endpoint is provisioned and ready to use. You can now start to publish and subscribe to topics.

E,

P Greengrass
sert—Z. amazonaws. com

W Secure
Certificates
ENABLED
Policies Logs
Chs You can enable AWS 10T to log helpful information to CloudWatch Logs. As messages from your devices pass through the message
broker and the rules enging, AWS loT logs process events which can be helpful in troubleshooting.
Role Aliases Role
my-iot-role
Authorizers
Level of verbosity
P Defend Debug
b At ﬂ
Test
Event-based messages ENABLED
Software AWS |aT can send event-based messages to pre-determined MQTT topics when specific service events occur.,
Event Publish to MQTT MQTT topic Subscribe all
Learn
Job: completed, canceled @® Enabled Copy topic Subscribe
Documentation [7
Job execution: success, failed, rejected, canceled, remaved @® Enabled Copy topic Subscribe

e Client ID: any unique ID.

e Certificate For Thing: thing certificate or custom certificate downloaded when the created thing is

imported.
e Private Key: private key or custom private key downloaded when the created thing is imported.

e rootCA: CA certificate imported for server authentication. You can download the CA certificate from
It is recommended to use Amazon Root CA 1 or Starfield Starfield root CA certificate.

Currently, the Amazon Root CA 3 certificate is not supported.

e Use the default values for other parameters.

1.2. AWS loT User Manual 109

InGateway Documentation, Release 0.0.1

oT) Developer Guide

AWS loT x CA certificates for server authentication
er Guide
Depending on which type of data endpoint you are using and which cipher suite you have negotiated, AWS
What is AWS 1oT? loT Core server authentication certificates are signed by one of the following root CA certificates:
Getting started with AWS loT VeriSign Endpoints (legacy)

Core

« RSA 2048 bit ke;l: VeriSign Class 3 Public Primary G5 root CA certificate [

AWS loT Tutorials

Amazon Trust Services Endpoints (preferred)
Managing devices with AWS

loT

@ Note

Tagging your AWS loT X " .
You might need to right click these links and select Save link as... to save these certificates as files.

resources

Security
« RSA 2048 bit keyjAmazon Root CA 1[2.

Security in AWS loT « RSA 4096 bit key: Amazon Root CA 2. Reserved for future use.

Authentication « ECC 256 bit key: Amazon Root CA 3[4.
Server authentication s ECC 384 bit key: Amazon Root CA 4. Reserved for future use.
Client authentication These certificates are all cross-signed by th* Starfield Root CA Certificate E.II\II new AWS loT Core regions,

beginning with the May 9, 2018 launch of AWS loT Core in the Asia Pacific (Mumbai) Region, serve only ATS
certificates.

Custom authentication

2.2 Publishing Messages to the AWS loT

e Step 1: Configure the message to be published.

Choose Cloud > Message Management and add the message to be published. The following figure

shows the configuration:

Publish

Bac
* Name: data_upload

+ Topic awsiot/test

* Qos(MQTT): 1

Group Type: @ Collect ~ Alarm

* Group: default X

* Main Function: vars_upload test Should be the same with the name of the entry function in the seript

* Seript: import loggin

from dat rt datetime

st(data_collect _api):
1

1_dict in data_collect["values’].items()

lect["timestamp”],

The script is as follows:

110 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

import logging

from datetime import datetime

i

Logs are generally generated in the gateway in the following ways:

1. import logging: uses logging.info(XXX) to generate logs. Display of logsy,
—generated in this way ts not controlled by the log level parameter on the globaly,
—parameter page.

2. from common.Logger import logger: uses logger.info(XXX) to gemerate logs..
—Display of logs generated in this way is controlled by the log level parameter ony
—the global parameter page.

mnn

def vars_upload_test(data_collect, wizard_api): # Define the main publishing,
— function.
value_list = [] # Define the data list.
for device, val_dict in data_collect['values'].items(): # Traverse the wvalues,
—dictionary. The dictionary contains the device name and the wvariables of they
—~device.
value_dict = { # Customize the data dictionary.
"Device": device,
"timestamp": data_collect["timestamp"],
"Data": {}
}
for id, val in val_dict.items(): # Traverse wvartables and assign values fory
—the Data dictionary.
value_dict["Data"][id] = val["raw_data"]
value_list.append(value_dict) # Add data in wvalue_dict to wvalue_list ing
—sequence.
logging.info(value_list) # Print data in value_list in app logs in the,
—following format: [{'Device': 'S7-1200', 'timestamp': 1589538347.5604711, 'Data’:
—~{'Testl': False, 'Test2': 12}}].
return value_list # Send wvalue_list to the app, which then uploads it to they
—MQTT server by collection time. If it fails to be sent, cache the data and upload,

—1t to the MUTT server by collection time after the comnection recovers.

The message publishing parameters are described as follows:
— Name: custom publication name.

— Topic: publication topic, which must be consistent with the topic that the MQTT server sub-

scribes to.

— Qos(MQTT): publication QoS, which is recommended to be consistent with that of the MQTT

1.2. AWS loT User Manual 111

InGateway Documentation, Release 0.0.1

Step

server.
* 0: The message is sent only once, without retry.
x 1: The message is sent at least once to ensure that it reaches the MQTT server.

Group Type: when publishing variable data, select Collection. Then, only Collection Group
is available in Group. When publishing alarm data, select Alarm. Then, only Alarm Group is

available in Group.

Group: after a group is selected, all variables in this group are uploaded to the MQTT server
according to the publication configuration. If you select multiple groups, the script logic in the
publication is executed for the variables in each group at the collection interval of the groups.

The group must include variables. Otherwise, the script logic in the publication is not executed.

Main Function: name of the main function (entry function), which must be consistent with that

in the script.

Script: uses Python code to customize the packaging and processing logic. The main function

parameters are as follows:
* Parameter 1: same as Parameter 1 in the main function of Standard MQTT-Publishing.

x Parameter 2: AWS IoT API of the Device Supervisor. For details, see Device Supervisor
AWS IoT API Description.

2: Subscribe to messages in the AWS IoT.

Choose AWS IoT > Test and enter the IG902 publication topic in the Subscription topic text

box.

As an example, the topic is awsiot/test.

Services v ResourceGroups v % 2 @i E ~ Oregon ~ Supp)

AWS loT PRl © suceess
Connected to Device Gateway on client ID ‘iotconsole-1597305202051-1.

Monitor

Activity

» Onboard

» Manage

> Greengrass

P Secure

» Defend

AWS loT Test

MQTT client o

Connected as iotconsole-1597305202051-1 +

_
Subscribe to a topic
Subscribe

Publish to topic Devices publish MQTT messages on topics. You can use this client to subscribe to a topic and receive these messages.

Subscription topic

awsiot/test Subscribe to topic
> At
Max message capture _Info
-
Quality of Service Info
@ o- This client will the Device d
Software 1 - This client will the Device received
Settings
MQTT payload display
Learn @ Auto-format JSON payloads (improves readability)
- Display payloads as strings (more accurate)
Documentation [4 Display raw payloads (in hexadecimal)
Message Management
Publish
Name Type Topic Qos(MQTT) Group Main Function operation ()
data_upload 1 default vars_uplozd_test 20

e Step 3: View the messages that the AWS IoT receives.

112

Chapter 1. InGateway Documentation Site Navigation

http://app.ig.inhandnetworks.com/en/latest/Device-Supervisor-User-Manual-EN.html#publish

InGateway Documentation, Release 0.0.1

After subscribing to the topic, you can view the message content under the topic.

AWS loT

» Onboard

» Manage

» Greengrass

> Secure

» Defend

> Act

© success
Connected to Device Gateway on cli

‘Connected as iotconsole-1597305202051-1 +

Subscribe to a topic
Publish

Publish to a topic Specify a topic and a message to publish with a QoS of 0.

I awsiot/test Publish to topic
awsiot/test x

awsiot/test August 13, 2020, 16:01:02 (UTC+0800) Export Hide
[
t

“Device”: *Temperature_Sensor”,

“tinestanp’: 1597305662. 211609,

“Data”: {

Test”: 2

awsiot/test August 13, 2020, 16:00:51 (UTC+0800) Export Hide

[
t

“Device”: *Temperature_Sensor”,
“tinestanp’: 1597305651. 1687763,
“Data”: {
Test”: 2

Privacy Policy Terms of Use:

2.3 Subscribing to AWS loT Messages

e Step 1: Configure the message for subscription.

Choose Cloud > Message Management and add the message for subscription. The following figure
shows the configuration:

Subscribe

Name:

* Topic:

* Qos(MQTT):

* Main Function

* Seript:

m freset

Cloud

Back

data_receive
awsiot/send
1

main Should be the same with the name of the entry function in the script

The message subscription parameters are described as follows:

— Name: custom subscription name.

— Topic: subscription topic, which must be consistent with the data topic published by the MQTT

server.

1.2. AWS loT User Manual 113

InGateway Documentation, Release 0.0.1

— Qos (MQTT): subscription QoS. The default value is 0.

— Main Function: name of the main function (entry function), which must be consistent with that

in the script.

— Script: uses Python code to customize the packaging and processing logic. The main function

parameters of custom topic subscription are as follows:
* Parameter 1: received topic. The data type is string.
* Parameter 2: received data. The data type is string.

x Parameter 3: AWS IoT API of the Device Supervisor. For details, see Device Supervisor
AWS IoT API Description.

e Step 2: Publish messages in the AWS IoT.

Choose AWS IoT > Test and enter the IG902 subscription topic in the Publish to topic text box.

As an example, the topic is awsiot/send.

Services v ResourceGroups v % [\ iot@inhand.com.cn @ 3311.. v Oregon ~

MQTT client i

Connected as iotconsole-1597305202051-1 ~

AWS loT X
Subscriptions
Meniter _
Activity Subscribe to a topic
Subscribe
» Onboard Publish to a topic Devices publish MQTT messages on topics. You can use this client to subscribe to 2 topic and receive these messages
Subscription topic
o susiot/test x
» Manage ol awsiot/test - -

B Greengrass Max message capture _Info

100

> secure
Quality of Service Info
» oefend @ 0~ This client will not acknowledge o the Device Gateway that messages re received
1-This client will to the Device messa received
> At
MQTT payload display
. Auto-format JSON payloads (improves readability)
est
Display payloads as strings (more accurate)
@ Display raw payloads (in hexadecimal)
Software
Publish
Settings °

ecify 2 topic and 3 message to publish with 2 O

Leam
awsiot/send Publish to topic

Documentation [

Message Management

Publish
Name Type Topic Qos(MQTT) Group Main Function operation ()
data_upload awsiot/test 1 default vars_upload_test 20
Subscribe
Name Type Topic Qos(MQTT) Main Function operation ()

asta receive ! main za

e Step 3: View the messages that the AWS IoT publishes.

After the AWS IoT publishes messages, you can view the received messages in the run logs of the app.

on_cloud subscribe. topic: awsiot/send, payload: b [\n “message”: “Hello from WS IoT console’'nl”. qos: O

[2020-08-13 16:03:51, 387] [INFO] [AWS
[2020-08-13 16:03:61, 399] [INFO] [<string> 6]: awsiot/send

[2020-08-13 16:03:61, 401] [INFO] [<string> 7]: V" {n “messagze”: "Hello from WS IoT console”'n}’

[2020-08-13 16:03:61, 4021 [INFO] [AWSIaT. pv 142]: [4WSIoT]: receive message, topic: awsiot/send, payload: b’ {'n “message”: "Hello from VS ToT console™n}’

1.2.4 Appendix

114 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Device Supervisor AWS loT API Description

For details about the basic configuration of wizard_api, see Device Supervisor API Description. If the cloud

service type is AWS IoT, wizard_api additionally provides the following method:
e awsiot_publish(topic, payload, qos)
— Method Description: data submitting method.

— Parameter

* Parameter 1: MQTT topic. The data type is string. This topic is used to send the data to
the MQTT server.

* Parameter 2: data to be sent.
*x Parameter3: QoS level. The options are 0 and 1.

— Usage example:

Publish

+ Name data_upload

* Topic awsiot/test

* Qos(MQTT) 1

Group Type @ Collect Alarm

* Group: default X

* Main Function vars_upload_test Should be the same with the name of the entry function in the script

* Seript

ollect["values'].items()

m Reset

import logging

from datetime import datetime

i

Logs are generally generated in the gateway in the following ways:

1. import logging: uses logging.info(XXX) to gemerate logs. Display of logs,
—generated in this way s not controlled by the log level parameter on the,
—global parameter page.

2. from common.Logger import logger: uses logger.info(XXX) to generate logs.y
—~Display of logs generated in this way is controlled by the log level

—parameter on the global parameter page.

nmnn

(continues on next page)

1.2. AWS loT User Manual 115

http://app.ig.inhandnetworks.com/en/latest/Device-Supervisor-User-Manual-EN.html#device-supervisor-api-description

InGateway Documentation, Release 0.0.1

(continued from previous page)

def vars_upload_test(data_collect, wizard_api): # Define the main publishing,
— function.
value_list = [] # Define the data list.
for device, val_dict in data_collect['values'].items(): # Traverse the,
—values dictionary. The dictionary contains the device mame and the wvariables,
—of the device.
value_dict = { # Customize the data dictionary.
"Device": device,
"timestamp": data_collect["timestamp"],
"Data": {}
}
for id, val in val_dict.items(): # Traverse wartables and assign valuesy
—for the Data dictionary.
value_dict["Data"][id] = val["raw_data"]
value_list.append(value_dict) # Add data in wvalue_dict to walue_list ing
—sequence.
logging.info(value_list) # Print data in value_list in app logs in they
—following format: [{'Device': 'S7-1200', 'timestamp': 1589538347.5604711,
< 'Data': {'Testl': False, 'Test2': 12}}].
wizard_api.awsiot_publish("awsiot/test", value_list, 1) # Send walue_list,
—~to the app, which then uploads it to the MUTT server by collection time. If,
—1t fails to be sent, cache the data and upload it to the MYTT server by,

—collection time after the connection recovers.

1.3 Azure loT User Manual

The Azure IoT Hub (Azure IoT for short) is hosted in the cloud as the central message center for bidirectional

communication between IoT applications and devices managed by them. You can establish reliable and

secure communication between millions of IoT devices and backend of cloud-hosting solutions and generate

ToT solutions through the Azure IoT. This allows users to connect any device to the IoT Hub.

The edge computing gateway InGateway902 (IG902 for short) provides the Device Supervisor app (Device

Supervisor for short) to help users connect their devices to the Azure IoT. This document uses IG902 as an

example to describe how to submit service data and deliver configuration data between the Device Supervisor
and the Azure IoT.

o Prerequisites

e 1. Environment Preparation

— 1.1 Configuring the Azure IoT

116

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

x 1.1.1 Adding the IoT Hub
x 1.1.2 Adding the IoT Device
— 1.2 Configuring the Edge Computing Gateway
x 1.2.1 Basic Configuring
x 1.2.2 Data Collecting Configuration
e 2. Message Publishing and Subscription
— 2.1 Connecting to the Azure IoT
— 2.2 Publishing Messages to the Azure IoT
— 2.8 Subscribing to Azure IoT Messages
e Appendix
— Example of Publishing Messages to the Azure IoT
— Ezample of Subscribing to Azure IoT Messages
— Device Supervisor Azure IoT API Description
e FAQ

— Q1: The Azure IoT Connection Frequently Fails Shortly After It Is Established

1.3.1 Prerequisites

o Azure cloud platform account
o Edge computing gateway 1G501/1G902
— Firmware version
*x 1G902: IG9-V2.0.0.r12754 or later
x IGH01: IG5-V2.0.0.r12884 or later
— SDK version
* 1G902: py3sdk-V1.4.0_Edge-IG9 or later
* IG501: py3sdk-V1.4.0_Edge-IG5 or later

— App version: device_supervisor-V1.2.5 or later

1.3.2 1. Environment Preparation

e 1.1 Configuring the Azure IoT

e 1.2 Configuring the Edge Computing Gateway

1.3. Azure loT User Manual 117

InGateway Documentation, Release 0.0.1

1.1 Configuring the Azure loT

e 1.1.1 Adding the IoT Hub
e 1.1.2 Adding the IoT Device

If you have configured the IoT Hub and IoT device in the Azure 10T, go to 1.2 Configuring the Edge
Computing Gateway. Otherwise, perform the following steps to configure the Azure IoT.Visit https://

portal.azure.cn/ to log in to Azure.

Microsoft Azure

Pick an account

to continue to Microsoft Azure

market@inhandn
china.cn

—I— Use another account

1.1.1 Adding the loT Hub

Choose IoT Hub after login, as shown in the following figure:

118 Chapter 1. InGateway Documentation Site Navigation

https://portal.azure.cn/
https://portal.azure.cn/

InGateway Documentation, Release 0.0.1

Microsoft Azure HittH2 BB P search resources, services, and docs (G+/)

Azure services

& g e ' @ =
Time Series Event Hubs 0T Hub Time Series Cloud servicas Azure Database SQL databases Storage
Insights... nsights even (classic) for MysQL accounts
Recent resources
Name Type Last Viewed
B — oT Hub 17hago
oT Hub 4moago
sha Stream Analytics job 4moago
Container registry 4moago
oT Hub 4moago
Container registry 4moago
Stream Analytics job 4moago
n Subscription 4moago
inh Stream Analytics job 5moago
& inn mage 9moago
@ inl Network security group 1yr ago
@ it) Network security group 1yr ago
Navigate
Subscriptions Resource groups Al resources [E] oashboara

Azure Monitor

Click Add to create an IoT Hub.

Microsoft Azure HittH2 BB P Search resources, services, and docs (G+/)

Home > 10T Hub

Manage view v (O Refresh L Exportto CsV.

Showing 1 to 3 of 3 records,

] Name

Q Feedback & Leave preview

all Resource grou

@) (Location ==all @) (i Add filter

Type 1o Resource group 1y Location Ty Subscription 1y

ox IoT Hub China North Subscription
ox IoT Hub China North Subscription
Oxz 10T Hub China North

0_Subscription

page

1.3. Azure loT User Manual 119

InGateway Documentation, Release 0.0.1

Microsoft Azure P Search resources, senvices, and docs (G+ =
— SRR ARE.

Home > 10T Hub > 1oT hub
1oT hub X
Microsoft

Szeandscale Tags Review + create

Create an IoT hub to help you connect, monitor, and manage billions of your loT assets. Learn more

Project details
Choose the subscription you'll e to manage deployments and costs. Use resource groups like folders to help you
organize and manage resources

Subscription * @ [Marketing_subscription M

Resource group *

[inhandiot V]

Create new

Region* © [‘china North V]

10T hub name *

[Erome 2

Next: Sze andscae >] Auomaton options

‘

The following figure is displayed after the IoT Hub is created:

Microsoft Azure HittH2 BB P Search resources, services, and docs (G+/)

Home > EIP-Demo-41112717 - Overview X
. . @ Deployment succeeded 11:28 AM
<7 EIP-Demo-41112717 - Overview Deployment ‘EP-Demo-41112717"to resouce group

De n ‘inhandiot' was successful.
[Delete) Redeploy O Refresh
SR @ Your deployment is complete
2 inputs ,
Deployment name: EIP-Demo-41112717 Starttime: 4/1/2020, 11:27:18 AM
Outputs Subscription: Marketing_Subscription Correlation ID: 0
Resource group: inhandiot
Template Security Center
' Deployment details (Download) Secure your apps and infrastructure
Go to Azure security center >
A Next steps 7

Free Microsoft tutorials
Add and configure 0T Devices Recommended
Use IoT Hub message routing to send device-

Configure routing rules for device messaging Recommended to-cloud messages to different endpoints

Understanding the device identity registry
Understanding 10T Hub quotas and throttling

1.1.2 Adding the loT Device

Create an IoT device in the IoT Hub.

120 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Microsoft Azure HiitHg] A search resources, services, and docs (G+/)

Home > EIP-Demo-41112717 - Overvie

", EIP-Demo-41112717 - Overview
D;

‘ W Delete (T Redeploy () Refresh
LIS @ Your deployment is complete
A inputs
Deployment name: EIP-Demo-41112717
Outputs Subscription: Marketing_Subscription
Resource group: inhandiot
Template

v Deployment details (D

A Nextsteps

Recommended

ging Recommended

Starttime: 4/1/2020, 11:27:18 AM
Correlation ID: 904902b4-9a26-4afe-a8ac-8ea02{879dac

Microsoft Azure HittHEBIEE R search resources, services, and docs (G+/)

Home > EIP-Demo-41112717 - Overview > loT devices

3/

Security Center

Secure your apps and infrastructure
Go to Azure security center >

Free Microsoft tutorials
Use IoT Hub message routing to send device-
to-cloud messages to different endpoints

Understanding the device identity registry
Understanding IoT Hub quotas and throttling

1oT devices

Ep-Der

View, create, delete, and update devices in your loT Hub.

Field Operator Value

DEVICE ID STATUS LAST STATUS UPDATE (... AUTHENTICATION TYPE

No devices found

/> Switch to query editor

CLOUD TO DEVICE MESSAGE COUNT

1.3. Azure loT User Manual

121

InGateway Documentation, Release 0.0.1

Microsoft Azure HittH2 BB P search resources, services, and docs (G+/)

Home > EIP-Demo-41112717 - Overview > IoT devices > Create a device

X .' Create a device o X
o

“ Find Certfied for Azure loT devices in the Device Catalog

Device |

[Epoemoet z

Authentication type ©
(CEEXERTED %509 self-signed X509 CA Signed)

AUTHENTICATION TYPE CLOUD T

Auto-generate keys @
/|

Connect this device to an 10T hub @

@D oizve)

The following figure is displayed after the IoT device is created:

Home > EIP-Demo-41112717 - Overview > loT devices

loT devices X
EIP-Demo

+ New () Refresh
View, create, delete, and update devices in your loT Hub.

Field Operator Value

| Add anew clause

e <> Switch to query editor

DEVICE ID STATUS LAST STATUS UPDATE (.. AUTHENTICATIONTYPE CLOUD TO DEVICE MESSAGE COUNT

Enabled - Sas 0

1.2 Configuring the Edge Computing Gateway

e 1.2.1 Basic Configuring

e 1.2.2 Data Collecting Configuration

122 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

1.2.1 Basic Configuring

e For details about I1G902 connection configuration and software version update, see IG902 Quick Guide.

e For details about IG501 connection configuration and software version update, see [G501 Quick Guide.

1.2.2 Data Collecting Configuration

For details about the basic data collection configuration for the Device Supervisor, see Device Supervisor

App User Manual. The following figure shows the data collection configuration in this document:

Device List Operation: (3) 1, 4

o

Temperature_Sensor
ModbusTCP
P:10.5.16.82

I

Total 1 item ‘ 1 ‘

Operation: t, 1,

Variables Table(Temperature_Sensor)
Name Group Data Type Address Value Description Time Operation

2z

I
o

® Temperature default WORD 40001 221°C

* Humidity default WORD 40002 521 20

Total 2 items ‘ 1 ‘ 50/ page

1.3.3 2. Message Publishing and Subscription

e 2.1 Connecting to the Azure IoT
e 2.2 Publishing Messages to the Azure IoT

e 2.3 Subscribing to Azure IoT Messages

2.1 Connecting to the Azure loT

Choose Edge Computing > Device Supervisor > Cloud on 1G902, select Enable Cloud Service,

and select Azure IoT from the Type drop-down list. The following is a configuration example:

1.3. Azure loT User Manual 123

http://manual.ig.inhandnetworks.com/en/latest/IG902-Quick-Start-Manual.html
http://manual.ig.inhandnetworks.com/en/latest/IG501-Quick-Start-Manual.html
http://app.ig.inhandnetworks.com/en/latest/Device-Supervisor-User-Manual-EN.html
http://app.ig.inhandnetworks.com/en/latest/Device-Supervisor-User-Manual-EN.html

InGateway Documentation, Release 0.0.1

m
LA

Visor Cloud

m
(M}
]
P
0l
m
1
(]
m

Status

Cloud Status: Connection Successful

Connection time: 0 Day 00:13:31

Enable Cloud Service: C @

* Type: Azure |oT

St

*CDnnEctH:Iﬂ Striﬂg: AR AERAR R R R AR AR B

The parameters are described as follows:
e Type: select Azure IoT for an Azure IoT connection.

e Connection String: main connection string of the Azure IoT device. You can select the device from

the IoT Hub in the Azure IoT and copy the main connection string to here.

Microsoft Azure B2 BBG=E P Search resources, services, and docs (G+/) 1 A B 7 ";i;:gfg;:g:;;;? 6

Home > loT Hub >

loT Hub « {i} EIP-Demo | loT devices » X
AFEEENSER A ROERAT leT Hub
+ add @B Manageview v <o 1) « + New () Refresh
£ Locks .
[Fitter by name. J
B3 Export template View, create, delete, and update devices in your loT Hub.
Name T
Explorers Fieid Operator Value
- ... B aueryexplorer + x select or enter a property name e v aint value

N o |[® 107 gevices |2 + Add 2 new clause

K oo Automatic Device Management e <> Switch to query editor

& 107 edge
10T device configuration
DEVICE ID STATUS LAST STATUS UPDATE (... AUTHENTICATION TYPE CLOUD TO DEVICE MESSAGE COUNT

Messaging
Enabled - Sas 0

File upload
V¥, Message routing
Monitoring
¥ Alerts
fil Metrics
B Diagnostic settings
Support + troubleshooting

P Resource health

page [1 v]of1 a
ge [1 v]o 2 New support requast

124 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Microsoft Azure thitid BIBGaE P Search resources, services, and docs (G+/) fie! b market@inhandnetwork... 5

JEPRERB PA AR IR
Home > loT Hub > EIP-Demo | loT devices
EIP-Demo-Test = X
EP-Demo
= Message to Device < Direct Method = Add Moduleldentity = DeviceTwin ~ ©, Managekeys ~ () Refresh
0o EP-Demo-Test
e @

6
ele]e o o

Module Identities Configurations

MODULE ID CONNECTION STATE CONNECTION STATE LAST UPDA... LAST ACTIVITY TIME (UTC)

There are no module identities for this device.

2.2 Publishing Messages to the Azure loT

e Step 1: Configure the message to be published.

Choose Cloud > Message Management and add the message to be published. The following figure
shows the configuration:

Cloud
Publish Bac
Name data_upload
Group Type: ® Collect Alarm
* Group: default
* Main Function: vars_upload_test Should be the same with the name of the entry function in the script
* Script: import

import

api):

lect[‘values'].items():

ect["timestamp”],

al["raw_data"]

o_cloud(json. dumps
n.dumps (value_list), °de

import logging

mnimn

Logs are generally generated in the gateway in the following ways:

1. import logging: uses logging.info(XXX) to generate logs. Display of logsy

—generated in this way ts not controlled by the log level parameter on the globaly,

—parameter page.

(continues on next page)

1.3. Azure loT User Manual 125

InGateway Documentation, Release 0.0.1

(continued from previous page)

2. from common.Logger import logger: uses logger.info(XXX) to gemerate logs..
—~Display of logs generated in this way is controlled by the log level parameter ony
—the global parameter page.

nmnn

def vars_upload_test(data_collect, wizard_api): # Define the main publishing,
— function.
value_list = [] # Define the data list.
for device, val_dict in data_collect['values'].items(): # Traverse the wvalues,
—dictionary. The dictionary contains the device name and the wvariables of they
—device.
value_dict = { # Customize the data dictionary.
"Device": device,
"timestamp": data_collect["timestamp"],
"Data": {}
3
for id, val in val_dict.items(): # Traverse wvartables and assign values fory
—the Data dictionary.
value_dict["Data"][id] = val["raw_data"]
value_list.append(value_dict) # Add data in wvalue_dict to walue_list ing,
—sequence.
logging.info(value_list) # Print data in value_list in app logs in the,
—following format: [{'Device': 'S7-1200', 'timestamp': 1589538347.5604711, 'Data’:
—~{'Testl': False, 'Test2': 12}}].
return value_list # Send wvalue_list to the app, which then uploads it to they
—MQTT server by collection time. If it fails to be sent, cache the data and upload,

—~1t to the MUTT server by collection time after the comnection recovers.

The message publishing parameters are described as follows:
— Name: custom publication name.

— Group Type: when publishing variable data, select Collection. Then, only Collection Group
is available in Group. When publishing alarm data, select Alarm. Then, only Alarm Group is

available in Group.

— Group: after a group is selected, all variables in this group are uploaded to the MQTT server
according to the publication configuration. If you select multiple groups, the script logic in the
publication is executed for the variables in each group at the collection interval of the groups.

The group must include variables. Otherwise, the script logic in the publication is not executed.

— Main Function: name of the main function (entry function), which must be consistent with that

in the script.

126

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

— Script: uses Python code to customize the packaging and processing logic. The main function

parameters are as follows:

* Parameter 1: same as Parameter 1 in the main function of Standard MQTT-Publishing.

*x Parameter 2: Azure IoT API of the Device Supervisor. For details, see Device Supervisor
Azure IoT API Description.

o Step 2: Use the Azure IoT Tools plug-in of the Visual Studio Code (VS Code for short) to establish
the connection to the IoT Hub.

After submitting the published message, use the Azure IoT Tools plug-in of the VS Code to view

messages sent to the Azure IoT. You can download the VS Code from https://code.visualstudio.com/

Download.Install and start the VS Code, choose Extensions, search for Azure IoT Tools, and then

install the Azure IoT Tools plug-in.

> File Edit Selection View Go Run Terminal Help

EXTENSIONS: MARKETPLACE

Azure IoT Tools

Azure loT Tools 0:0
The ultimate collection of extensions for ...
Microsoft
Azure loT Hub 2152
This extension is now a part of Azure loT ...

Microsoft Install

>

Azure Account 0511
A common Sign-In and Subscription ma...
Microsaft

React Native Tools 0.17.0

Debugging and integrated commands fo...
Microsoft
Azure IoT Edge 1220

“This extension is now a part of Azure IoT ..
Microsoft
XML Tools 2.

XML Formatting, XQuery, and XPath Tool...
e —
Azure Resource Manager (ARM) ... 0120
Language server, editing tools and snipp.
Microsoft
Azure Repos 1.161.0

Connect to Azure Repos and work with G...
Microsaft [install |
Azure CLI Tools 050

Tools for developing and running comm...

Microsoft inctall

Extension: Azure IoT Tools - Visual Studio Code

Extension: Azure loT Tools X

Azure loT Tools vsciotvscodezzureiot-too

Microsoft | @ 42786 | % %k & % Repository | License | v0.3.0

The ultimate collection of extensions for working with Azure loT in VS Code!

Details Feature Contributions Changelog

Extension Pack (3)

= Azure loT Hub

-i This extansion is now a part of ...
L Microsoft

Azure loT Device Workbench
This extension is now a part of ..
Microsoft

Azure loT Edge
This extension is now a part of ..
Microsoft

[

Azure 10T Tools for Visual Studio Code
Microsoft Azure |oT support for Visual Studio Code is provided through a rich set of extensions that make it easy to discover and interact with
Azure 10T Hub that power your loT Edge and device applications

If you do not have an Azure subscription, sign up today for a free account. You'll get 12 months of popular free senvices, $200 in Azure
Credits to try out any combination of Azure services, and access to free services such as Azure loT Hub, Azure loT Edge, etc.

What's New (v0.3.0)

The Azure module appears on the left if the installation is successful.

)Q File Edit Selection ¥iew Go Run

EXTENSIONS: MARKETPLACE

=
Azure loT Tools

Azure loT Tools 030
The ultimate collection of extensions for ...

&

Microsoft

Azure loT Hub 2152

This extension is now a part of Azure oT ...

Microsoft v Instalied €54
Azure Account 0211
A common Sign-In and Subscription ma...

Microsoft

B

React Native Tools 0170
Debugging and integrated commands fo...
Microsoft

Azure loT Edge 1220

This extension is now a part of Azure oT ...

Microsoft v Instalied €53

Terminal

Help

Extension: Azure loT Tools - Visual 5

Extension: Azure loT Tools X

Azure loT Tools vscotsce
42,794

) Microsoft * ok ok ok Repository License v0.3.0

The ultimate collection of extensions for working with Azure loT in VS Code!

Details Feature Contributions Changelog

Extension Pack (3)
= Azure loT Hub

'i This extension is now a part of ...

L Microsoft Installed {83

E

Choose Explorer > AZURE IOT HUB to expand AZURE I0T HUB.

1.3. Azure loT User Manual

127

http://app.ig.inhandnetworks.com/en/latest/Device-Supervisor-User-Manual-EN.html#publish
https://code.visualstudio.com/Download
https://code.visualstudio.com/Download

InGateway Documentation, Release 0.0.1

30 Fil= Edit Selection View Go Bun Terr

EXPLORER

~ OPEMN EDITORS
= Extension: Azure loT Tools
~ NO FOLDER OPEMED

You have not yet openad a folder.

You can also clone a repository from a
URL. To learn more about how to use git
and source control in V5 Code read our
docs.

Clone Repository

» OUTLINE
» TIMELINE
~~ AZURE 10T HUB
- EIP-Demo
~ Devices
> &8 EIP-demo-edge
» ik EIP-Demo-Test
> i 1G902-55
» Endpoints

Click -+ and choose Set IoT Hub Connection String.

128 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

)Q File Edit Selection Wiew Go Run Terminal Help

EXPLORER Extension: Azure foT Tools X

~ OPEN EDITORS
Ee Extension: Azure loT Tools
~ NO FOLDER OPENED

Azure loT Tou«
Microsoft | < 427

The ultimate collection ¢

Disable |l Uninstall JREEES

>

You have not yet opened a folder.

You can also clone a repository from a
URL To learn more about how to use git
and source control in VS Code read our
docs.

Clone Repository

Details Feature Contributions Changelog

» OUTLINE
» TIMELINE
~ AZURE 10T HUB (]
& EIP-Demo
~ Devices
> & EIP-demo-edge
> i EIP-Demo-Test Select 1oT Hub

> $¥ 16902-55 Set loT Hub Connection String

» Endpoints
Create |oT Hub

Show Welcome Page

Send D2C Message to 1oT Hub

Create Device
Create |oT Edge Device

Generate SAS Token for loT Hub

Start Monitoring Built-in Event Endpoint

Stop Monitoring Built-in Event Endpoint

Copy loT Hub Connection String

Update Distributed Tracing Setting (Preview)

1.3. Azure loT User Manual 129

InGateway Documentation, Release 0.0.1

Enter the IoT Hub connection string in the text box. You can go to the specified IoT Hub and choose
Shared access policies > iothubowner to obtain the IoT Hub connection string.

Microsoft Azure Hiitfg] P Search resources, services, and docs (G+/)

Home > IaT Hub > iothubowner X
loT Hub « 57 EIP-Demo | Shared access policies = frepeme
[

e L S A laT Hub

O Regenerate keys [Delete

 add B Manage view v « + add
‘ Ovenview
& Activity leg o 16T Hub uses permissions o grant access to each oT hub endpoint. Permissions limit the access 1o an
Permissions
B, Access control (1AM) o
® Tags
o - [P search to fiter items Registry write (O
- 4P Diagnose and solve problems
‘ Policy permissions Service connect (0
- Events .
s registry wite, sen
2 Device connect @
Settings senvice service connect
Shared access policies | 2 device device connect
@ pricing and scale registryRead registry read Shared access keys
: primary key
3 IPFilter registryReadWrite registry write @ E
A certificates R
secondary key ©
@ Built-in endpoints
- Failover
Connection string—primary key
= Properties
Lock: -
8 Lods Connection string—secondary key ©
K2 Export template
Explorers
B y
Page Query explorer
8 10T devices >
iq Eile Edit Selection View Go Run Terminal Help Extencion: Azyra 1oT Tools - Vicyal Studio Cod.
EXPLORER Extension: Azure 10T Tools X J-CI-CI:\
“~ OPEN EDITORS loT Hub Connection String (Press ‘Enter’ to confirm or ‘Escape’ to cancel)
3 1
X = Extension: Azure loT Tools Azure loT Todts
~+ NO FOLDER OPENED . _ X X _
Microsoft D 42,794 Repositery License v0.3.0

You have not yet opened a folder. The ultimate collecticn of extensions for working with Azure loT in VS Code!

You can also clone a repository from a
URL To learn more about how to use git
and source control in VS Code read our

docs. Extension Pack (3)
This extension is now
L

Microsoft

Details Feature Contributions Changelog

Azure loT Edge
This extension is now
Microsoft

Azure |oT Tools for Visual Studio Code

> OUTLINE
> TIMELINE Microsoft Azure |oT support for Visual Studio Code is provided through a rich set of extensions that 1
~ AZURE 10T HUB Azure |oT Hub that power your loT Edge and device applications.
& EIP-Pemo If you do not have an Azure subscription, sign up today for a free account. You'll get 12 months ¢
~ Devices Credits to try out any combination of Azure services, and access to free services such as Azure loT
> g EIP-demo-edge
> i EIP-Demo-Test What's New (v0.3.0)
> ## 1Go02-55
> Endpoints Azure loT Hub Toolkit

Enter the connection string and press Enter. The created Azure IoT device and its connection status
are displayed under AZURE 10T HUB.

130 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

®J File Edit Selection View Go Run Term

EXPLORER

~ OPEMN EDITORS
= Extension: Azure loT Tools
~ NO FOLDER OPEMED

You have not yet openad a folder.

You can also clone a repository from a
URL. To learn more about how to use git
and source control in V5 Code read our
docs.

Clone Repository

» OUTLINE
» TIMELINE
~+ AZURE 10T HUB (o]
-X EIP-Demo
~ Devices
> &8 EIP-demo-edge
» ik EIP-Demo-Test
> i 1G902-55
» Endpoints

&

Connected

e Step 3: View the messages that IG902 uploads to the Azure IoT.

Right-click the Azure IoT device and choose Start Monitoring Built-in Event Endpoint to view

the data that IG902 pushes to the IoT Hub.

1.3. Azure loT User Manual 131

InGateway Documentation, Release 0.0.1

] File Edit Selection View Go Run Terminal Help

EXPLORER Extension: Azure It

~ OPEMN EDITORS
= Extension: Azure loT Tools
~ NO FOLDER OPEMED

DN

You have not yet openad a folder.

You can also clone a repository from a
URL. To learn more about how to use git
and source control in V5 Code read our
docs.

Clone Repository

Details Feature

» OUTLINE
» TIMELIMNE
~ AJURE IOT HUE
o EIP-Demo
~ Devices
> &8 EIP-demo-edge
> i ep - '*
> i 1G9 Send D2C Message to 1oT Hub
» Endpoin Send C2D Message to Device

Invoke Device Direct Method

Edit Device Twin

Start Monitoring Built-in Event Endpoint

Start Receiving C2D Message

Generate Code

Generate SAS Token for Device

Get Device Info

Copy Device ‘“Dnefﬁgﬁgrgir.mQnGateway Documentation Site Navigation

Delete Device

InGateway Documentation, Release 0.0.1

The message content received by the IoT Hub is displayed on the OUTPUT tab page.

View Go Run Terminal Help

@ EXPLORER

~ OPEN EDITORS

* NO FOLDER OPENED

You have not yet opened a folder.

You can also clone a repository from a
URL. To learn more about how to use git
and source control in VS Code read our
docs.

Clone Repository

PROBLEMS ~ QUTPUT DEBUG COI

[IoTHubMenitor] Start monitoring message arrived in built-in endpoint for device [EIP-Demo-Test] ...
[IoTHubMonitor] Created partition receiver [8] for consumerGroup [$Default]
gTHubMonitor] Created partition receiver 111 for consumerGroup [§Default]

ZICUILRE [IoTHubMonitor] [5:26:87 PM] Message received from [EIP-Demo-Test]:
> TIMELINE [
~+ AZURE 10T HUB {
& EIP-Demo "Device™: "Temperature_Sensor”,
+ Devices “timestamp”: 1507318766.3282845,
"Data": {

> & EIP-demo-edge
> EIP-Demo-Test
> 8 1600255 3
> Endpoints }
1

[IoTHubMonitor] [5:26:18 PM] Message received from [EIP-Demo-Test]:

"Temperature™: 221,
"Humidity™: 521

[0

[
{
"Device™: "Temperaturs_Sensor”,
"timestamp”: 1597318777.3636884,
"Data": {
"Temperature™: 221,
"Humidity™: 521
}
}
1
[IoTHubMenitor] [5:26:27 PM] Message received from [EIP-Demo-Test]:
[
{
"Device™: "Temperature_Sensor”,
“timestamp”: 1597316786.3475487,
1 "Data": {

¥ @040 O Stop Monitoring built-in event endpoint

2.3 Subscribing to Azure loT Messages

e Step 1: Configure the message for subscription.

Choose Cloud > Message Management and add the message for subscription. The following figure

shows the configuration:

1.3. Azure loT User Manual 133

InGateway Documentation, Release 0.0.1

Subscribe
* Name: data_receive

* Main Function: ctltest Should be the same with the name of the entry function in the seript

* Script

import logging
import json
def ctl_test(message, wizard_api):
logging.info(message.data) # Print the subscription data. Assume that they
—payload data ts {"method":"setValue", "TagName":"SP1", "TagValue'":12.3}.
payload = json.loads(message.data) # Deserialize subscription data.
if payload["method"] == "setValue": # Check whether the data %s written.
message = {payload["TagName"]:payload["TagValue"]l} # Define the message to,
—be delivered, including the variable names and values to be delivered.
wizard_api.write_plc_values(message) # Call the write_plc_values method ofy
—~the wizard_api module to deliver data from the message dictionary to the,

—specified variable.

The message subscription parameters are described as follows:

— Name: custom subscription name.

— Main Function: name of the main function (entry function), which must be consistent with that

in the script.

— Script: uses Python code to customize the packaging and processing logic. The main function

parameters are as follows:

* Parameter 1: message class sent by Azure IoT. The data and custom_properties methods

are supported. For details, see Fxample of Subscribing to Azure IoT Messages.

x Parameter 2: Azure IoT API of the Device Supervisor. For details, see Device Supervisor
Azure IoT API Description.

Step 2: Use the Azure IoT Tools plug-in of the Visual Studio Code (VS Code for short) to establish
the connection to the IoT Hub.

Same as Step 2 of “Publishing Messages to the Azure [oT" .

134

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

e Step 3: Use the Azure IoT Tools to send data to 1G902.

Right-click the Azure IoT device and choose Send C2D Message to Device to send the data to 1G902.

%) File Edit Selection View Go Run Terminal Help Visual Studio Code

EXPLORER

~ OPEN EDITORS
~ NO FOLDER OPENED

You have not yet apened a folder.

You can also clone a repository from a
URL. To learn more about how to use git
and source control in VS Code read our
docs.

Clone Repository

OUTPUT

[IoTHubMonitor
[IoTHubMonitor
[IoTHubMonitor

Start monitoring message arrived in built-in endpoint for device [EIP-Demo-Test] ...
Created partition receiver [B] for consumerGroup [$Default]
Created partition receiver [1] for consumerGroup [$Default]

> OUTLINE [IoTHubMonitor] [5:26:87 PM] Message received from [EIP-Demo-Test]:
» TIMELINE [
s AZURE |OT HUB {
N EIP-Demo "Device”: "Temperature_Sensor”,
+ Devices "timestamp": 1597310766.3282845,
> & Eip-demo-edge ‘bata’: {

"Temperature”: 221,

> i EIP-Demo-Tast ¢ umidity™s 521

b - 3 Send D2C Message to loT Hub

Invoke Device Direct Method lonitor] [5:26:18 PM] Message received from [EIP-Demo-Test]:
Edit Device Twin

Start Monitoring Built-in Event Endpoint rice"

"Temperature_Sensor”,

Start Receiving C2D Message nestamp”: 1597318777.35636@84,
a':

Generate Code Temperature”: 221,

Generate SAS Token for Device fumidity”: 521

Get Device Info
Copy Device Connection String
lonitor] [5:26:27 PM] Message received from [EIP-Demo-Test]:
Delete Device
v
"Device"”: "Temperature_Sensor”,
"timestamp": 1597310786.3475487,
"Data":

¥ ®O0A0 O Stop Monitoring built-in event endpoint

Enter the data to be sent, for example, {"method":"setValue", "TagName":"Temperature",
"TagValue":123}.

1.3. Azure loT User Manual 135

InGateway Documentation, Release 0.0.1

>Q File Edit Selection View Go Run Terminal Help Visual Studio Code

EXPLORER {"method":"setValue", “TagName":"Temperature”, "TagValue":123}

~ OPEN EDITORS Enter message to send to device (Press ‘Enter’ to confirm or "Escape’ to cancel)

~ NO FOLDER OPENED

You have not yet opened a folder.

Open Folder

You can also clone a repository from a
URL. To learn more about how to use git
and source control in VS Code read our
docs.

Clone Repository

QUTPUT

[IoTHubMonitor] Start monitering message arrived in built-in endpoint for device [EIP-Demo-Test] ...
[IoTHubMonitor] Created partition receiver [8] for consumerGroup [$Default]
[IoTHubMonitor] Created partition receiver [1] for consumerGroup [$Default]

2AOTLINE [IoTHubMonitor] [5:26:87 PM] Message received from [EIP-Demo-Test]:
> TIMELINE [
~ AZURE 10T HUB {

X EIP-Demo "Device": “"Temperature_Sensor",

~ Devices “timestamp”: 1597318766.3282845,

"Data”:

’ g EIP-demo-edge "Tempeiature": 221,

> 1F EIP-Demo-Test (v} “Humidity”: 521

> i 1Go02-55 3

> Endpoints }

1

Press Enter to send the data. Then, the success log is displayed on the OUTPUT tab page, and the

value of the Temperature variable is changed to 123 on the Device List page.

>Q File Edit Selection View Go Run Terminal Help
EXPLORER
~ OPEMN EDITORS

~ NO FOLDER OPENED

You have not yet opened a folder.

You can also clone a repository from a
URL. To learn more about how to use git
and source control in VS Code read our
docs.

Clone Repository

"Device": "Temperaturs_Sensor”,
"timestamp”: 1597311877.6825287,

> OUTLINE "Data": {
> TIMELINE "Temperature”: 221,
~ AZURE 10T HUB "Humidity™: 521

24 EIP-Demo }

~ Devices 1 }

> & EIP-demo-edge [C2DMessage] Sending message to [EIP-Demo-Test]

> & EIP-Demo-Test (¢] [C2DMessage] [Success] Message sent to [EIP-Demo-Test]
> 4 1G902-55 o TRUS BT or T[S L7 PR TS e Sge TECeTvEr Tl [EIP-Demo-Test] :
> Endpaints [

{
"Device": "Temperature_Sensor”,
"timestamp”: 1597311886.64766876,
"Data": {

136 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

RESIE wE (D L L
Temperature_Sensor]
ModbusTCP
Y,
P: 10.5.16.82 -
ES)ed [1]
FEE%F (Temperature_Sensor) w1, L,
=% P srEsm o mE =0 iRl =IO
* Temperature default WORD 40001 s 2020-07-31 19:04:57 20
* Humidity default WORD 40002 521 %RH 2020-07-31 19:04:57 Zz 0
e [1] S0 &A

Service data submitting and configuration data delivery between the Device Supervisor and the Azure IoT
are completed.

1.3.4 Appendix

o Example of Publishing Messages to the Azure IoT
e Ezample of Subscribing to Azure IoT Messages

e Device Supervisor Azure IoT API Description

Example of Publishing Messages to the Azure loT

e Publication example 1: using return to publish user data and property data

Publish Bacl
*Name data_upload

Group Type ® Collect Alarm

*Group: default X

*Main Function vars_upload_test Should be the same with the name of the entry function in the script

* Seript import L

in val_dict.items():
i [id al["rau_data”]

1.3. Azure loT User Manual 137

InGateway Documentation, Release 0.0.1

import logging

import json

i

Logs are generally generated in the gateway in the following ways:

1. import logging: uses logging.info(XXX) to generate logs. Display of logsy,
—generated in this way ts not controlled by the log level parameter on the globaly,
—parameter page.

2. from common.Logger import logger: uses logger.info(XXX) to gemerate logs..
—Display of logs generated in this way is controlled by the log level parameter ony
—the global parameter page.

mnn

def vars_upload_test(data_collect, wizard_api): # Define the main publishing,
— function.
value_list = [] # Define the data list.
for device, val_dict in data_collect['values'].items(): # Traverse the wvalues,
—dictionary. The dictionary contains the device name and the wvariables of they
—device.
value_dict = { # Customize the user data dictionary.
"Device": device,
"timestamp": data_collect["timestamp"],
"Data": {}
}
for id, val in val_dict.items(): # Traverse wvartables and assign values fory
—the Data dictionary.
value_dict["Data"][id] = val["raw_data"]
value_list.append(value_dict) # Add data in wvalue_dict to wvalue_list ing
—sequence.
logging.info(value_list) # Print data in value_list in app logs in the,
—following format: [{'Device': 'S7-1200', 'timestamp': 1589538347.5604711, 'Data’:
—~{'Testl': False, 'Test2': 12}}].
upload_data = {"data":json.dumps(value_list), "custom_properties":{"Name":
—"properties upload"}} # Define submitted data with the data type of dictionary.,
—The user data is the value of “data” , the data type is string, the property datay
—1s the wvalue of “custom_properties” , and the data type is dictionary.
return(upload_data) # Send upload_data to the app, which then uploads it to the,
—Azure IoT by collection time. If it fails to be sent, the data is cached and

—uploaded to the Azure IoT by collection time after the connection recovers.

Publication example 2: using send_message_to_cloud to send user data and using save_data to store

the variables that fail to upload

138

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

Publish Back

*Name: data_upload

Group Type: ® Collect Alarm

*Group: default %

* Main Function: vars_upload_test Should be the same with the name of the entry function in the script

* Scripts import
import

rs_upload_test(data_collect, wizard api):

lect["values®].items():

1lect["tinestamp"],

m feset

import logging

import json

Logs are generally generated in the gateway in the following ways:

1. import logging: uses logging.info(XXX) to generate logs. Display of logsy
—generated in this way ts not controlled by the log level parameter on the globaly,
—parameter page.

2. from common.Logger import logger: uses logger.info(XXX) to gemerate logs.,
—Display of logs generated in this way is controlled by the log level parameter on

—~the global parameter page.

nmn

def vars_upload_test(data_collect, wizard_api): # Define the main publishing,
— function.
value_list = [] # Define the data list.
for device, val_dict in data_collect['values'].items(): # Traverse the values,
—dictionary. The dictionary contains the device name and the variables of the,
—device.
value_dict = { # Customize the user data dictionary.
"Device": device,
"timestamp": data_collect["timestamp"],
"Data": {}
I
for id, val in val_dict.items(): # Traverse wariables and assign wvalues for,
—~the Data dictionary.
value_dict["Data"] [id] = val["raw_data"]

value_list.append(value_dict) # Add data in wvalue_dict to wvalue_list ing,

=Seguence: (continues on next page)

1.3.

Azure loT User Manual 139

InGateway Documentation, Release 0.0.1

(continued from previous page)

logging.info(value_list) # Print data in value_list in app logs in they
—following format: [{'Device': 'S7-1200', 'timestamp': 1589538347.5604711, 'Data’:
—~{'Testl': False, 'Test2': 12}}].
if not wizard_api.send_message_to_cloud(json.dumps(value_list)): # Call they,
—send_message_to_cloud method of the wizard_api module to send wvalue_list to they
—Azure IoT and check whether it is successful.
wizard_api.save_data(json.dumps(value_list), 'default') # If it fails to bey

—sent, the data is stored and uploaded by time after the connection recovers.

Example of Subscribing to Azure loT Messages

e Subscribing to user data

The following is a configuration example:

Subscribe Back

* Name: data_receive
* Main Function ctl_test Should be the same with the name of the entry function in the script

* Seript:

The script is as follows:

import logging
import json
def ctl_test(message, wizard_api):
logging.info(message.data) # Print the subscription data. Assume that the,
—payload data ts {"method":"setValue", "TagName":"SP1", "TagValue'":12.3}.
payload = json.loads(message.data) # Desertialize subscription data.
if payload["method"] == "setValue": # Check whether the data is written.
message = {payload["TagName"]:payload["TagValue"]l} # Define the message to,
—be delivered, including the variable names and wvalues to be delivered.
wizard_api.write_plc_values(message) # Call the write_plc_values method ofy
—the wizard_api module to deliver data from the message dictionary to the,

—specified variable.

140

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

e Subscribing to property data

The following is a configuration example:

Subscribe Back
* Name: data_recaive
* Main Function: ctl_test Should be the same with the name of the entry function in the seript

* Script

The script is as follows:

import logging
import json
def ctl_test(message, wizard_api):

logging.info(message.custom_properties) # Print the subscription data.

Device Supervisor Azure loT API Description

For details about the basic wizard_api configuration, see Device Supervisor API Description. (Note: The
data can be stored only through the group name. For details, see Publication example 2). If the cloud service

type is Azure IoT, wizard_api additionally provides the following method:
e send_message_to_cloud
— Method Description: data submitting method.
— Parameter

x data: user data to be submitted. This parameter cannot be left empty. The data type must

be string, and the size of data submitted at a time cannot exceed 256 KB.

* custom_properties: property data to be submitted. The data type of property data must
be dictionary, and the data type of values in the dictionary must be integer, floating-point

number, or string. The size of data submitted at a time cannot exceed 81 KB.
— Usage example

* Submitting user data

1.3. Azure loT User Manual 141

http://app.ig.inhandnetworks.com/en/latest/Device-Supervisor-User-Manual-EN.html#device-supervisor-api-description

InGateway Documentation, Release 0.0.1

Publish Back
* Name data_upload

Group Type: @® Collect Alarm

* Group default %

* Main Function : vars_upload test Should be the same with the name of the entry function in the script

* Script

import j

def v

import logging

import json

Logs are generally generated in the gateway in the following ways:

1. import logging: uses logging.info(XXX) to generate logs. Display of logsy
—generated in this way ts not controlled by the log level parameter on the,
—~global parameter page.

2. from common.Logger import logger: uses logger.info(XXX) to gemerate logs.
— Display of logs generated in this way is controlled by the log levely

—parameter on the global parameter page.

nmn

def vars_upload_test(data_collect, wizard_api): # Define the main,
—publishing function.
value_list = [] # Define the data list.
for device, val_dict in data_collect['values'].items(): # Traverse the,
—wvalues dictionary. The dictionary contains the device mame and the,
—wvariables of the device.
value_dict = { # Customize the user data dictionary.
"Device": device,
"timestamp": data_collect["timestamp"],
"Data": {}
by
for id, val in val_dict.items(): # Traverse wvariables and asstgny,
—wvalues for the Data dictionary.
value_dict["Data"] [id] = val["raw_data"]
value_list.append(value_dict) # Add data in wvalue_dict to value_

—~1list in sequence.

(continues on next page)

142

Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

(continued from previous page)

logging.info(value_list) # Print data in value_list in app logs in they
< following format: [{'Device': 'S7-1200', 'timestamp': 1589538347.5604711,
— 'Data': {'Testl': False, 'Test2': 12}}].

wizard_api.send_message_to_cloud(json.dumps(value_list)) # Call the,
—send_message_to_cloud method of the wizard_api module to send wvalue_list,

< (user data) to the Azure IoT.

* Submitting property data

Publish Back

ars_upload_test Should be the same with the name of the entry function in the script

m fesst

import logging

import json

win

Logs are generally generated in the gateway in the following ways:

1. tmport logging: uses logging.info(XXX) to generate logs. Display of logsy
—~generated in this way is not controlled by the log level parameter on the,
—global parameter page.

2. from common.Logger import logger: uses logger.info(XXX) to gemerate logs.
— Display of logs generated in this way is controlled by the log levely

—parameter on the global parameter page.

nnn

def vars_upload_test(data_collect, wizard_api): # Define the main,
—publishing function.

value_dict = {"Name":"properties upload"} # Customize the property datay
—dictionary.

wizard_api.send_message_to_cloud("properties", value_dict) # Call the,
—~send_message_to_cloud method of the wizard_api module to send value_dict,

— (property data) to the Azure IoT. Note: When property data is sent,,

2 1

4 4 + 1 o fd 4 A A 4 43 W)
=S pPaTamelrer 1 Cannol Ut tEJL emply, ane e ault Lype musStT ((E’Dn‘tilhhéébgn next page)

1.3. Azure loT User Manual 143

InGateway Documentation, Release 0.0.1

(continued from previous page)

1.3.5 FAQ
Q1: The Azure loT Connection Frequently Fails Shortly After It Is Established

Al: The run logs of the app contain Paho returned rc==1.

2020-08-10 14: 55:48, 622
2020-08-10 14: 56:48, 624
2020-08-10 14: 55: 48, 626
2020-08-10 14: 55:48, 634
2020-08-10 14: 55: 48, 636
2020-08-10 14: 56:48, 641
2020-08-10 14: 55:48, 646
2020-08-10 14: 55:48, 850
2020-08-10 14: 55:48, 654
2020-08-10 14: 55:48, 655
2020-08-10 14: 55:48, 657
2020-08-10 14: 55: 48, 662,
2020-08-10 14: 55: 48, 66
2020-08-10 14: 55: 48, 670,
2020-08-10 14: 55: 48, 674,

[] [INFO] [pipeline_stages_mgtt.py 274]: _om_mgtt_comected called
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[2020-08-10 14: 55: 48, 678]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[
[DEEUG] [pipeline_stages base.py 253]: PipelineRootStage: CanmectedEvent received. Calling mn_connected_handler
[DEEUG] [pipeline_thread py 108]: Starting _on_comnected in callback thread
[ERROR] [handle_exceptions. py 28]: Exception cauzht in background thread Thable to handle.
[ERROR] [handle_exceptions. py 291: ["TypeBrror: *MNonelype' obiject is not callable'n”]
[DEEUG] [pipeline_stages_mqtt.py 2301: completing commect op
[DEBUG] [pipeline_stages_mqtt.py 103]: MTTTransportStage (ConmectOperation): cancelling watchdog
[DEBUG] [pipeline_ops_base. py 109]: ConmectOperation: completing witheut error
[DEBUG] [pipeline_stages_base.py 525]: ComectionLockStage (CommectOperation): op succesdsd Unblocking queus
[DEBUG] [pipeline_stages_base.py 9501: ComectionLockStage (CommectOperation): wrblocking and releasing queusd ops.
[INF0] [pipeline_stages_base. py 553]: ComectionLockStage (ComectOperation): processing 0 items in queus
[DEBUG] [pipeline_stages base.py 1046]: RecommectStags(CommectOpsration) on_cormect_complete error=Hone state=LOGICALLY COMNECTED never_cotnected=Falss comected=Trus
[IF] [pipeline_stages_base.py 1141]: RecomectStage: completing waiting ops with error=None
[DEBUG] [pipeline_stages base.py 1085]: RecannectStage: Recornmsct timer espired. State is WATTING_TO_RECOMNECT Commected is False.
[DEBUG] [pipeline stages base.pr 1071]: ReconnectStage: sending new connect op deun
[DEBUG] [pipeline stages base.pr 5411: CormectionLockStags(CommectOperation): blocking

2020-08-10 14:55:48, 882] [

2020-08-10 14: 55:46, 636] (|

2020-08-10 14: 55:48, 881] [

2020-08-10 14: 55:48, 684] [

2020-08-10 14: 55:48, 800] |

2020-08-10 14: 55:48, 809] (|

2020-08-10 14: 55:48, 918] [

2020-08-10 14: 55:48, 919] (|

2020-08-10 14: 55:48, 823] (|

2020-08-10 14: 55:48, 924] (]

2020-08-10 14: 65:48, 829] [

2020-08-10 14: 65:48, 831] [

2020-08-10 14: 65:48, 836] [

2020-08-10 14: 65:48, 335] [

2020-08-10 14: 65:48, 342] [

IFO] [pipeline stages_mqtt.py 170]: MQTTIransportStage(ComectOpsration): connecting

DEBUG] [pipelins_stages mqtt.py 88]: MQITTransportStage(ComectOpsration): Starting watchdog

WFO] [mgtt_transport.py 376]: conmecting to mgrt broker

TFO] [mgtt_transport.py 387]: Conmect using port 8363 (ICF)

DEBUG] [client.py 2165]: Sending CONNECT (ul, pl, weO, wal, w0, cf, k60 cliemt id=b’ I6902-55°

DEEUG] [mgtt_transport.py 428]: _mgtt client.connect returned rc=0

INFO] [pipeline stages mqtt. py 3211: MQTTTransportStags: _mm matt disconnect called: CommsctionDroppedBrror{'Paho returned ro==1")
DEBUG] [pipelins_stages base.py 1002]: RecomnectStags(DisconmsctedBvent): Stats is WAITING_TO FECOMMECT Comected is False.
DEBUG] [pipelins_stages base.py 261]1: PipelineRaotStage: DiscomectsdBvent received Calling on disconnscted handler
DEBUG] [pipelins thread py 108]: Starting _on_disconmected in callback thrsad

TNFO] [pipeline stages mqtt.py 359]: MQTTTransportStage: discomection was unexpected

INFO] [sync_cliemts.py 80]: Comnsctiom State - Discomnected

MFO] [sync_cliemts.py 821 Cleared all pending method requests due to discormect

TF0] [handle_exceptions.py 52]: Unespected disconnection. Safe to iznore since other stages will reconmect.

TNFO] [handle_exceptions. py 53] [amr

zure. iot. device. conmon. transport_exceptions. ComectionDroppedError: ComectimDroppedError (Paho returnsd re=1") |

The above exceptim was the direct cause of the following exceptim:

Traceback (most recemt call last):
File “fvarfuser/app/device_supervizorbak/device_supervisor/lib/ szure/iot/ device/comon/handle_exceptions. py”, line 43, in swallow_unraised exception
azure. iot. device. comon. transport_exceptims. ComectionDroppedError: ComectionDroppedError (Nene) caused by ComectionDroppedError("Pzho retumed re==1")

Log in to the Azure IoT, select the IoT devices related to the connection string, and choose IoT Hub >
IoT devices. The message “You’ ve reached your daily message quota, so you won’ t be able to send
new message or view device list” is displayed. If this occurs, wait until the daily message quota is available

again, or increase the daily message quota.

Microsoft Azure ghitHg] P search resources, services, and docs (G+/) market@inhandnetwol
BGAEPE AR

Home

g} EIP-Demo | loT devices # y
oT Hub
‘ « T New “,‘ Refresh
settings - — - = . -
() You've reached your daily message quota, so you won't be able to send new message or view device list. Because you're using the free edition of [oT Hub, you can't increase message quota, Wait util 12 AM UTC or create a hub using a paid
Shared & plan. Learn more.
@ Ppridn

2= P Filter

A certificates

Built-in endpoints

cai

= Properties

B Locks
Export template
. DEVICE ID STATUS LAST STATUS UPDATE (... AUTHENTICATION TYPE CLOUD TO DEVICE MESSAGE COUNT
Explorers
B Query explorer

loT devices

Automatic Device Management

144 Chapter 1. InGateway Documentation Site Navigation

InGateway Documentation, Release 0.0.1

1.4 DeviceSupervisor 2.0 Upgrade Notes

The DeviceSupervisor version 1.2.X is referred to as DS 1.0 and the DeviceSupervisor version 2.X.X is

referred to as DS 2.0. When upgrading from DS 1.0 to DS 2.0, you need to pay attention to the following

points.

1.4.1 Global description

. Only support the smooth upgrade of DS 1.0 version 1.2.9 and above to DS 2.0;

After the upgrade, the configuration information of DS 1.0 will be translated into the configuration of
DS 2.0, and it cannot be rolled back to the DS 1.0 version after the upgrade;

. After smooth upgrade, the configuration format obtained by calling DS 1.0 get__tag_ config API has

changed;

The configuration of DS 2.0 is inconsistent with DS 1.0, and the configuration file of DS 1.0 cannot be
imported into DS 2.0.

1.4.2 Explanation of terms after upgrade

Device —> Controller

Variable —> Measuring point

Alarm Strategy —> Alarm Rules

Group (Polling interval) —> Group (Reporting interval)

Added controller “Polling Interval”

1.4.3 Update instructions for each functional module

Measure Monitor

. After the upgrade, the configuration of OPCUA /EtherNetIP measure point will be discarded;

. The data type BOOL will be converted to the BIT type;

DS 2.0 no longer supports configuring multiple devices (controllers) with the same IP address and port;
DS 1.0’ s write-only mode variables will become read /write mode after upgrade;

After the smooth upgrade, the modbus address changes: 20000->110000, 40000->310000, 50000-
>410000;

After the smooth upgrade, the measurement point upload mode, realtime -> periodic.

1.4.

DeviceSupervisor 2.0 Upgrade Notes 145

InGateway Documentation, Release 0.0.1

Alarm

1. After the upgrade, the history alarms and offline cache data stored in DS 1.0 will be cleared;

2. The alarm strategy in DS 2.0 no longer supports the “direct use of address” strategy, and the alarm

strategy using this method will become invalid after the upgrade;

3. After the upgrade, the alarm group of DS 1.0 is deleted. DS 2.0 only distinguishes different alarms
according to the alarm name. It should be noted that if the DS 1.0 cloud service script refers to an
empty alarm group, the script may not be available after the upgrade because there is no alarm group.

To run, please manually select the trigger source type in the cloud service script.

Cloud Service

1. After DS 1.0 is upgraded, write__plc_ values API will no longer support anonymous device names to
modify measure point values, that is, to modify PLC values, you need to specify the controller name.
Therefore, the Alibaba Cloud attribute setting script of DS 1.0 will be invalid. You need to specify the
name of the device to be modified (DS 2.0 is called the controller) in the script;

2. After upgrading the Alibaba Cloud custom RRPC script of DS 1.0, the topic response will be invalid,
but the script function can be executed normally. It is recommended to use the DS 2.0 API to modify

the script;
3. Smooth upgrade does not support GreenGrass Core related configuration migration;

4. After the smooth upgrade, the certificate name used by the cloud service will become the default

certificate name of DS 2.0, which does not affect the use of the function.

Parameter Settings

1. After the smooth upgrade, two new parameters, SN and MAC, are added to the custom parameters.
The built-in parameter gateway_sn in DS 1.0 will also be explicitly added. If gateway_sn is used in

the script, please delete gateway_ sn carefully. You can use the new DS 2.0 SN replaces gateway_ sn;

2. After the smooth upgrade, the parameter setting canceled the item of the maximum number of

historical data.

146 Chapter 1. InGateway Documentation Site Navigation

	InGateway Documentation Site Navigation
	Device Supervisor App User Manual
	AWS IoT User Manual
	Azure IoT User Manual
	DeviceSupervisor 2.0 Upgrade Notes

